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Sources of Infinity

❖ Unbounded communication queues (channels), unbounded waiting queues.

❖ Unbounded push-down stacks: recursion.

❖ Unbounded counters, unbounded capacity of places in Petri nets.

❖ Unbounded string variables.

❖ Continuous variables: time, temperature, ...

❖ Unbounded dynamic spawning of threads, dynamic memory allocation:

• dynamic linked (circular/shared/nested/...) lists, trees, skip-lists, ...

❖ Parameterisation:

• parametric bounds of queues, counters, ...,

• parametric networks of processes.
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Model Checking Infinite-State Systems

❖ Cut-offs: safe, finite bounds on the sources of infinity such that when a system is

verified up to these bounds, the results may be generalised.

❖ Abstraction:

• predicate abstraction: x ∈ {5, 6, 7, ...} ❀ x ≥ 5,

• abstractions for parameterised networks of processes: 0-1-∞ abstraction, ...

❖ Symbolic methods: finite representation of infinite sets of states using

• logics,

• grammars,

• automata, ...

❖ Automated induction, ...
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Decidability Issues

❖ Formal verification of infinite state systems is usually undecidable.

❖ There exist (sub)classes of systems for which various problems are decidable:

• push-down systems—model checking LTL is even polynomial for a fixed formula,

• lossy channel systems—reachability, safety, inevitability, and (fair) termination are

decidable (though non-primitive recursive),

• various parameterised systems for which finite cut-offs exist,

• ...

❖ Otherwise, semi-algorithmic solutions can be used:

• termination is not guaranteed,

• an indefinite answer may be returned, or

• a help from the user is needed: invariants, predicates, ...
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Regular Model Checking

The Basic Idea
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Regular Model Checking

[Pnueli et al. 97], [Wolper, Boigelot 98], [Bouajjani, Nilsson, Jonsson, Touili 00]

❖ A generic framework for verification of infinite-state systems:

• a configuration ❀ a word w over a suitable alphabet Σ,

• a set of configurations ❀ a regular language:

– usually described by a finite-state automaton A,

– two distinguished sets of configurations:
◦ initial configurations Init and
◦ bad configurations Bad,

• an action (transition) ❀ a rational relation τ :

– usually described by a finite-state transducer T ,

– sometimes, more general, regularity-preserving relations are used.
◦ Implemented, e.g., as specialised operations on automata.

❖ Safety verification ❀ check that τ∗(Init) ∩Bad = ∅,

• implies a need to compute τ∗(Init) or its sufficiently precise approximation.
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Regular Model Checking: Applications

• Communication protocols.

– Lossy/non-lossy FIFO channels systems / cyclic rewrite systems.

• Sequential programs with recursive procedure calls.

– Push-down systems / prefix rewrite systems.

• Counter systems, Petri nets.

– Various systems may be (automatically) translated to counter systems.

• String manipulating programs. [Yu, Alkhalaf, Bultan, Ibarra et al 08–17]

• Programs with (unbounded) dynamic linked data structures:

– lists, cyclic lists, shared lists. [Bouajjani, Habermehl, V., Moro 05]

• Parameterized networks of processes:

– mutual exclusion and cache coherence protocols, ..., [many of the mentioned works]

q1q2 · · · qi−1qiqi+1 · · · qj · · · qn 7→ q1q2 · · · qi−1q
′
iqi+1 · · · q

′
j · · · qn

– pipelined microprocessors. [Charvát, Smrčka, V. 14–19]
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Example: A Simple Token Passing

❖ A simple protocol in a linear process network:

• a parametric number of processes,

• a process does or does not have a token,

• a process that has a token passes it to the right.

❖ Initially, a token is in the left-most process.

P1 P2 P3 P4 PN

❖ Check that the token cannot disappear nor duplicate.
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Example: A Simple Token Passing

❖ An encoding of the simple token passing protocol for the needs of RMC:

• the alphabet: Σ = {T ,N},

• configurations: words from Σ∗, e.g., N N T N ,

• initial configurations: T N∗ (a regular language),

• bad configurations: N∗ + (T +N)∗ T N∗T (T +N)∗ (a regular language),

• transitions—in the form of a finite-state transducer:

T / N N / T

N / N
T / T

0 1 2

N / N
T / T
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Example: A Simple Token Passing

❖ An application of the transducer on a single configuration:

T N N N
τ
→ N T N N

τ
→ N N T N

τ
→ N N N T

T / N N / T

N / N
T / T

0 1 2

N / N
T / T
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Example: A Simple Token Passing

❖ An application of the transducer on a single configuration:

T N N N
τ
→ N T N N

τ
→ N N T N

τ
→ N N N T

T / N N / T

N / N
T / T

0 1 2

N / N
T / T

❖ An application of the transducer on all initial configurations:

T N
∗ τ

→ N T N
∗ τ

→ N N T N
∗ τ

→ N N N T N
∗ τ

→ ...

T / N
2 3

T
0 1input automaton

transducer

N0,2 1,3 output automaton
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0 1input automaton

transducer
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❖ A simple iterative computation of all reachable configurations will never converge to

the desired set N∗ T N∗.

• Need special (accelerated) ways for computing/over-approximating τ∗(Init).

Regular Model Checking – p.10/29



Regular Model Checking

Computing Closures
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RMC: Computing Closures

The task: compute/over-approximate τ∗(Init).

❖ Problems to face:

• Non-regularity / non-constructibility of τ∗(Init).

• Termination of the constructions.

• State explosion in the automata / transducers.
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RMC: Computing Closures

The task: compute/over-approximate τ∗(Init).

❖ Problems to face:

• Non-regularity / non-constructibility of τ∗(Init).

• Termination of the constructions.

• State explosion in the automata / transducers.

❖ Solutions:

• Specialised constructions: LCS, PDS, classes of arithmetical relations, lists, ...

• General-purpose constructions:

– widening by extrapolating repeated patterns, [Bouajjani, Touili], [Wolper, Boigelot, Legay]

– merging states wrt the history of their creation, [Abdulla, Nilsson, Jonsson, d’Orso]

– widening by merging states wrt their fw/bw languages, [Yu, Alkhalaf, Bultan, Ibarra]

– refinable abstraction by state merging, [Bouajjani, Habermehl, V.]

– automata learning, [Habermehl, V.], [Vardhan, Sen, Viswanathan, Agha], [Chen, Hong, Lin, Rümmer]

– ...
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Abstract Regular Model Checking

❖ Given a relation τ , and two automata I (initial states) and B (bad states), check:

τ
∗(I) ∩B = ∅

1. Define a finite-range abstraction α on automata s.t. L(A) ⊆ L(α(A)).

2. Compute iteratively (α ◦ τ)∗(I).

3. If (α ◦ τ)∗(I) ∩B = ∅, then answer YES.
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2. Compute iteratively (α ◦ τ)∗(I).

3. If (α ◦ τ)∗(I) ∩B = ∅, then answer YES.

4. Otherwise, let θ be the computed symbolic path from I to B.

5. Check if θ includes a concrete counterexample.

• If yes, then answer NO.

• Otherwise, refine α s.t. it excludes θ and goto (2).
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Abstract Regular Model Checking
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τ
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Abstractions Based on State Collapsing

❖ We abstract automata by collapsing their states that are equal wrt some criterion s.t.:

L(A) ⊆ L(α(A)).

❖ Various equivalences on automata states can be used, e.g.:

• Equivalence wrt languages of words of a bounded length k:

q1 ≃k q2 iff L(A, q1)
≤k = L(A, q2)

≤k

L(A, q)≤k: the set of words of length at most k accepted in A from q.

• Equivalence wrt a set of predicate languages P = {P1, ..., Pn}:

q1 ≃P q2 iff ∀1 ≤ i ≤ n : L(A, q1) ∩ Pi 6= ∅ ⇔ L(A, q2) ∩ Pi 6= ∅
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Counterexample-Guided Refinement

M0

Mα
0

Mk-1

Mα
k-1

Mk

Mα
k

Mk+1

Mα
k+1

Mn

Bad

Xn
Xk+1

Xk

❖ For abstraction based on bounded length languages: increment the bound.

❖ For predicate automata abstraction: take as predicates languages of all states of the

last non-empty intersection of the forward and backward run:

P ′ = P ∪ {L(Xk, q) | q is a state in Xk}.
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Predicate Automata Abstraction: Refinement

Theorem:

Let A and X be two finite automata, and let P be a finite set of
predicate languages such that ∀q ∈ QX . L(X, q) ∈ P .

Then, if L(A) ∩ L(X) = ∅, we have L
(

αP(A)
)

∩ L(X) = ∅ too.

❖ Proof sketch: Assume w 6∈ L(A) ∧ w ∈ L
(

αP(A)
)

∩ L(X) with a minimum number of

jumps needed to accept it in A – the last jump being q1 ❀ q2 from where w2 is accepted.

q1

q2

w2

w1

to be collapsed/labelled by qX

A:

qX

w2

w1

X:
w2 w2

q3

For w1w
′
2, an even smaller number of jumps is needed which is a contradiction.
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RMC by Automata Learning

❖ Use algorithms for learning automata from positive/negative samples of their

languages to obtain an approximation of τ∗(I).

❖ Trakhtenbrot-Barzdin:

• based on having n-complete sets of positive and negative samples,

• can be obtained for length-preserving systems as τ∗(I≤n),

• if τ∗(I≤n) ∩B 6= ∅, error found,

• generalise the sample represented as a loop-free automaton by folding transitions

back to compatible states, obtain an automaton A,

*

*

T N

TN

*

*

N

T N

TN N T

NT

N

N

• if τ(L(A)) ⊆ L(A) ∧ I ⊆ L(A) ∧ L(A) ∩B = ∅, verified; otherwise, increase n.
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RMC by Automata Learning

❖ Angluin L* and variants:

• membership query for a configuration w: check w ∈ τ∗(I=|w|).

• equivalence query – replaced by τ(L(A)) ⊆ L(A) ∧ I ⊆ L(A) ∧ L(A) ∩B = ∅.

❖ Guaranteed to terminate with the correct answer for length-preserving systems.

Regular Model Checking – p.18/29



Regular Model Checking

String Analysis
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RMC and String Analysis

[Yu, Alkhalaf, Bultan, Ibarra et al 08–17]

❖ Deterministic finite automata from MONA with transitions encoded using MTBDDs

used for representing sets of strings that may appear in string variables of a program.

❖ Program statements (concatenation, replacement, ...) implemented as specialised

automata operations.

❖ Non-refinable widening – collapsing states considered equal:

• states having the same language,

• states having a common access string (for non-sink states),

• closed under transitivity.

❖ Implemented in the STRANGER tool.

❖ Applied for finding XSS vulnerabilities in php-based web applications.
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Regular Model Checking

Tricks
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RMC and Programs with 1-Selector-Linked Structures

[Bouajjani, Habermehl, Moro, V. 05]

❖ Heap structures (even with 1 selector) are complex:

p2

p1

p3

❖ Use pairs of from-to markers mf /mt:

p1 →→→ nt → mt →→→→→ ht → mf | p2 →→→ nf | p3 →→→ hf

❖ Pointer operations expressible by transducers up to marker elimination:

• | y mt→→ · · · → ⊥ | x →→ · · · → mf | is changed to

| x →→ · · · → y→→ · · · → ⊥|,

• Not rational!

• Move letter-by-letter and use widening to converge: overapproximation.

• Use automata surgery instead of transducers.
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RMC and Programs with 1-Selector-Linked Structures

❖ RMC can overapproximate sets of reachable configurations at any line,

including loop invariants.

❖ Basic memory safety checked directly by the transducers of the program statements:

• no garbage is created,

• no null pointer dereferences,

• no undefined pointer dereferences.

❖ More complex properties can be checked from the invariants.

❖ Generating and checking code (test harness) can be added to the original code to

check more complex properties: transforming the checks to error-line reachability.

❖ Sometimes, one may use special markers injected into random positions:

• e.g., when checking a function for reversing lists,

• one may check whether bgn l →∗ fst → snd →∗ end → ⊥ gets transformed to

end l →∗ snd → fst →∗ bgn → ⊥.
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RMC and Checking Liveness

❖ For length-preserving systems, liveness can be reduced to checking reachability:

• Choose any configuration a1a2 . . . an as a candidate for the beginning of a loop.

• Double every symbol: a1a1a2a2 . . . anan.

– In order to avoid words of the form w.w.

• Go on execution on the “red” symbols: a1τ
′(a1)a2τ

′(a2) . . . anτ
′(an).

• Check whether the system can get back to a1a1a2a2 . . . anan.

❖ Monitoring via some property automaton can be done within the transducer

implementing the transition relation.

❖ More general approaches have been proposed, covering even the non-length

preserving case. [Bouajjani, Legay, Wolper 05], [Vardhan, Sen, Viswanathan, Agha 05]
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Regular Model Checking

Extensions, Improvements
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RMC: Extensions, Improvements

❖ Omega regular model checking:

• based on variants of Büchi automata,

• systems with real-valued variables, liveness checking.
[Boigelot, Bouajjani, Legay, Wolper]

❖ (Abstract) regular tree model checking:

• based on variants of tree automata (TAs),

• parametric protocols with tree topology,

• shape analysis for programs with complex dynamic data structures.

❖ R(T)MC based on non-deterministic automata:

• simulation-based minimisation,

• antichain-based inclusion checking.
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ARTMC and Shape Analysis

❖ Can handle programs with complex dynamic data structures: various forms of singly-

and doubly-linked lists, trees, skip lists, structures with additional links, nested, combined,
and shared structures.

❖ Based on forest automata (FAs):

• tuples of TAs,

• graphs decomposed to tuples of trees whose leaves can refer to roots,

• symbols can be nested FAs describing repeated substructures.
[Holik, Hruska, Lengal, Rogalewicz, Simacek, V.]
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ARTMC: Shape Analysis with Backward Runs

[Holik, Hruska, Lengal, Rogalewicz, V. 17]

❖ Backward execution of a program along a possible counterexample trace:

• possible for classic ARTMC but originally not possible on (nested) FAs,

• required reversion of various meta-operations on FAs used in the forward analysis:

– folding/unfolding of nested FAs, splitting/merging TAs, reordering of TAs.

❖ Rare in the area of shape analysis in general!

❖ The introduction of the backward execution enabled:

• automated checking of possibly spurious counterexamples,

• automated refinement of the abstraction used,

• for the first time allowed both fully automated sound verification and precise bug

detection in programs with some complex data structures,

• the data structures could contain data from finite domains (possibly used as

markers for verification of complex properties such as element preservation,

sortedness, ...).
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