
SMT String Solving in CVC4
Andrew Reynolds & Cesare Tinelli

The University of Iowa

MOSCA 2019
May 6, 2019



Satisfiability Modulo Theories (SMT) Solvers

Many applications:
• Software verification
• Automated theorem proving
• Symbolic execution
• Security analysis

In this talk:
• How SMT Solvers (CVC4) handle string constraints



The CVC4 SMT Solver

Support for many theories and features
• UF, (non)linear arithmetic, arrays
• Bit-vectors, floating point
• Finite sets and relations, (co)datatypes
Þ Strings and regular expressions

Co-developed at Stanford and University of Iowa
• Project Leaders:

Clark Barrett and Cesare Tinelli
• String solver developers:

Andrew Reynolds, Tianyi Liang, Nestan Tsiskaridze, Andres Noetzli



Overview

• How SMT string solvers work:
• Basic architecture (DPLL(T))
• Core Theory Solver for Word Equations with Length Constraints
• Advanced Features
• Finite model finding
• Context-dependent simplification for extended string constraints
• Regular expression elimination



SMT solvers

Efficient tools for satisfiability modulo theories

SMT Solver

SAT Solver

Datatypes solver

Array solver

Arithmetic solver

Bit-vector solver

String solverDPLL(T),
Nelson-Oppen

Verification Conditions, Path Constraints, etc.



SMT solvers
Efficient tools for satisfiability modulo theories

SMT Solver

SAT Solver
Array solver

Bit-vector solver

String solverDPLL(T),
Nelson-Oppen

(	A[x]	+	B[x]	>	0	Ú x	+	y	>	0	)	Ù (	cons(“abc”,	d1)	≠	d2 Ú x	<	0)

Datatypes solver
Arithmetic solver



Efficient tools for satisfiability modulo theories

SMT solvers

SMT Solver

UNSAT SAT
SAT Solver

Array solver

Bit-vector solver

String solverDPLL(T),
Nelson-Oppen

(modulo theories) (modulo theories)

Datatypes solver
Arithmetic solver

(	A[x]	+	B[x]	>	0	Ú x	+	y	>	0	)	Ù (	cons(“abc”,	d1)	≠	d2 Ú x	<	0)



SMT solvers
Our focus: the theory of strings and linear arithmetic TSLIA

SMT Solver

UNSAT SAT
SAT Solver

Array solver

Bit-vector solver

String solverDPLL(T),
Nelson-Oppen

x	=	“ab”·z Ù |x|	+	|y|	≤	5	Ù (“abcd”·x	=	y	Ú |x|	>	5)

(modulo TSLIA) (modulo TSLIA)

Datatypes solver
Arithmetic solver



Theory of Strings + Linear Arithmetic (TSLIA)
Sorts:

• Integers Int
• Strings String, interpreted as A* for finite alphabet A

Terms:
• String Variables: x ,	y ,	z
• Integer Variables: i,	j,	k
• String Constants: “”,	“abc” ,	“AAAAA” ,	“http”
• String Concatenation: x·“abc”,		x·y·z·w
• String Length: |x|

Formulas are:
• Equalities and disequalities between string terms 
• Linear arithmetic constraints: |x|	+	4	>	|y|

Decidability: unknown, regardless, many problems can be solved efficiently in practice

x·“a”	=	y,	 y	≠	”b”·z,	 |y|	>	|x|	+	2Example: 



TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

Achieved as a Cooperation between:

10



TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5
Set of TSLIA-formulas in clausal normal form (CNF)
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Þ Either determines no satisfying assignments for input exist

TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

12

x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5

UNSAT



Þ … or returns a propositionally satisfying assignment

TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

13

x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5



Þ Constraints distributed to arithmetic and string solvers

TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

|x|	+	|y|	≤	5
x	=	“ab”·z
“abcd”·x	=	y	
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x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5



TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

|x|	+	|y|	≤	5
x	=	“ab”·z
“abcd”·x	=	y	
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x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5

Þ Either find constraints are TSLIA-satisfiable
SAT



TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

|x|	+	|y|	≤	5
x	=	“ab”·z
“abcd”·x	=	y	
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x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5
¬(x	=	“ab”·z) Ú |x|	=	|z|	+	2

Þ or return theory lemmas (valid TLIA/TS-formulas) to SAT solver

¬(x	=	“ab”·z) Ú |x|	=	|z|	+	2



TSLIA String Solver for DPLL(T)

SAT
Solver

Arithmetic
Solver

String
Solver

|x|	+	|y|	≤	5
|x|	=	|z|	+	2

x	=	“ab”·z
“abcd”·x	=	y	
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x	=	“ab”·z
|x|	+	|y|	≤	5

“abcd”·x	=	y	Ú |x|	>	5
¬(x	=	“ab”·z) Ú |x|	=	|z|	+	2

Þ and repeat



Inside a DPLL(T) Theory Solver

Given a set of T-literals MT,

Should the solver send a theory lemma to the SAT solver?
• no => return unknown, or 

return a model (a satisfying assignment)
• yes => which lemma?

• In typical DPLL(T) theory solvers (e.g. LIA) theory lemmas ó T-conflicts
¬(L1	Ù…	Ù Ln) for some T-unsatisfiable {L1,	…,	Ln}	ÍMT

• In string solver, theory lemmas may introduce new literals
• Will describe a strategy for strings

x	=	“ab”·z
“abcd”·x	=	y	



Arithmetic Theory Solver
Decision procedure:

T-conflicts based on a standard procedure, e.g. Simplex

Properties:
• Sound, lemmas it generates are LIA-valid
• Model-sound, “SAT” can be trusted
• Terminating, in the context of DPLL(T)

Only generates finitely many lemmas
\ Complete

Simplex 

SAT

T-Conflict

2*|x|	+	|y|	≤	5
|x|	- |z|	>	2

to the SAT solver

MLIA



String Theory Solver 
Inference strategy:

1. Process length constraints
2. Check for equality conflicts (congruence closure)
3. Normalize string equalities
4. Normalize string disequalities
5. Check cardinality constraints

Properties:
• Sound, lemmas it generates are Ts-valid
• Model-sound, “SAT” can be trusted
• Non-terminating, in the context of DPLL(T)

• May generate infinitely many lemmas

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Lemmas

x	=	“ab”·z
“abcd”·x	=	y	

to the SAT solver

Ms



String Solver

Running example:

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

MLIA |x|	≥	6 Simplex 



String Solver

Running example:

Will focus on string solver
[Liang et al. CAV2014]

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

MLI

A

|x|≥6 Simplex 



String Solver: Process Length
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms



String Solver: Process Length

• For each term of type string in Ms:
returns a lemma giving the definition of its length:

|”b”|	=	1 |”aab”|	=	3 |x·v|	=	|x|	+	|v|
|z·”aab”|	=	|z|	+	3 |u·”b”|	=	|u|	+	1 |v·w|	=	|v|	+	|w|

• For each variable of type string in Ms:
returns an emptiness splitting lemma:

x	=	“”	Ú |x|	≥	1 y	=	“”	Ú |y|	≥	1 ...

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms



String Solver: Process Length
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

MLIA |x|≥6

SAT
Solver

Lemmas



String Solver: Process Length

adds new constraints in 
arithmetic solver

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

MLIA

|x|	≥	6
|”b”|	=	1
|”aab”|	=	3

|x·v|	=	|x|	+	|v|
|z·”aab”|	=	|z|	+	3
|u·”b”|	=	|u|	+	3
|v·w|	=	|v|	+	|w|

|x|	≥	1
…

UNSAT?

SAT
Solver

new propositional assignment



String Solver: Congruence Closure
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms



String Solver: Congruence Closure

• Group terms by equivalence classes:

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠



String Solver: Congruence Closure

• Group terms by equivalence classes:

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Ms

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠
return lemma corresponding to Ts-conflict
if disequal terms in the same equivalence class



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality



String Solver: Normalize Equality

• Compute normal forms for equivalence classes
• A normal form is a concatenation of string terms r1·…·rn

where each rii is the representative of its equivalence class
Restriction: string constants must be chosen as representatives

• An equivalence class can be assigned a normal form r1·…·rn if:
Each non-variable term in it can be expanded (modulo equality and rewriting) to r1·…·rn

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality



String Solver: Normalize Equality

Normal forms computed by a bottom-up procedure

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

Normal forms computed by a bottom-up procedure
• First, compute containment relation induced by concatenation terms

• To compute a n.f. for eq-class of x·v, we must first compute a n.f. for eq-class of x and v
• This relation is guaranteed to be acyclic due to length elaboration step (cycle Þ LIA-conflict)



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

Normal forms computed by a bottom-up procedure
• First, compute containment relation induced by concatenation terms

• To compute a n.f. for eq-class of x·v, we must first compute a n.f. for eq-class of x and v
• This relation is guaranteed to be acyclic due to length processing step (cycle Þ LIA-conflict)

• Base case: eqc containing only variables can be assigned representative as a normal form
• Inductive case: compare the expanded form t1,…,tn of each non-variable term t

• If t1 @…	@ tn, assign to t.  If there exists distinct ti,  tj, then propagate or split

z u v



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “aab” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

z u v

Single non-variable string term Þ assign



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

z u v“aab”

Single non-variable string term Þ assign



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,		y,		z·”aab” w,		u·“b”

x·v,		v·w

≠

z u v“aab” “b”



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,		u·“b”

x·v,		v·w

≠

z u v“aab”

x,	y:	z·“aab”

“b”



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,		v·w

≠

z u v“aab”

x,	y:	z·“aab”

“b”

w:	u·“b”



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,		v·w

≠

z u v“aab”

x,	y:	z·“aab”

“b”

w:	u·“b”

Equivalence class with two non-variable terms with distinct expanded forms:
• x·v =	(z·”aab”)·v	 =	 z·”aab”·v
• v·w =	v·(u·”b”)	 =	 v·u·”b”



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

z u v“aab”

x,	y:	z·“aab”

“b”

w:	u·“b”

z·“aab”·v	=	v·u ·”b”
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

z u v“aab”

x,	y:	z·“aab”

“b”

w:	u·“b”

z

v u “b”

=“aab” v

?

?

Goal: split strings so that all aligning components are equal

z·“aab”·v	=	v·u ·”b”
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

z u v“aab”

x:	z·“aab”

“b”

w:	u·“b”

• Consider three cases for making these two terms equal:

z

v u “b”

=

“aab” v

?

When |z|	=	|v|

z·“aab”·v	=	v·u ·”b”
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

z u v“aab”

x:	z·“aab”

“b”

w:	u·“b”

• Consider three cases for making these two terms equal:

z

v u “b”

=

“aab” v

?

When |z|	<	|v|z v’

z·“aab”·v	=	v·u ·”b”
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z “abb” u “b” v

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

z u v“aab”

x:	z·“aab”

“b”

w:	u·“b”

• Consider three cases for making these two terms equal:

z

v u “b”

= “aab” v

?

When |z|	>	|v|v z’

z·“aab”·v	=	v·u ·”b”
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

z

v u “b”

=

“aab” v

• Consider:



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

v,z “abb” u “b”

x,		y,		z·”aab” w,		u·“b”

x·v,		z·w

≠

Recompute congruence closure



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

v,z “abb” u “b”

x,		y,		z·”aab” w,		u·“b”

x·v,		z·w

≠

Recompute congruence closure and normal forms



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u “b”

x,y,z·”aab” w,u·“b”
≠

u“aab”

x:	v·“aab”

“b”

w:	u·“b”

v,zv

x·v,		z·w

Recompute congruence closure and normal forms



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u “b”

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

u“aab”

x:	v·“aab”

“b”

w:	u·“b”

v·“aab”·v	=	v·u ·”b”?

v,zv

v

v u “b”

“aab” v =
?



String Solver: Normalize Equality
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v =	v·w
x·v ≠	w
z	=	v

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

“abb” u “b”

x,y,z·”aab” w,u·“b”

x·v,z·w

≠

u“aab”

x:	v·“aab”

“b”

w:	u·“b”

?

v,zv

v

v u “b”

“aab” v
repeat the process on these components

v·“aab”·v	=	v·u ·”b”?



Splitting on String Equalities
Choosing how to process equalities is 
highly non-trivial and critical to performance:

• Prefer propagations over splits
Infer x·w =	y·wÞ x	=	y before  x·w =	z·vÞ (x	=	z·x’	Ú z	=	x·z’)

• Can consider both the prefix and suffix of strings
Infer w·x =	w·yÞ x	=	y

• Use length entailment [Zheng et al 2015]
If |x|	>	|y| is entailed by the arith. solver, then x·w =	y·v Ù |x|	>	|z|Þ x	=	y·x’	



Splitting on String Equalities
Choosing how to process equalities is 
highly non-trivial and critical to performance:

• Propagation based on adjacent constants
x·“b”	=	“aab”·yÞ x	=	“aa”·x’,  since “b” cannot overlap with prefix “aa”

• Special treatment for looping word equations [Liang et al 2014]
• splitting leads to non-termination; reduce to RE membership instead
• e.g. x·“ba”	=	“ab”·xÞ x	Î (“ab”)*·”a”

• Deduced string equalities are not sent as unit lemmas
instead they are maintained internally



String Solver: Normalize Disequalities
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w

modified example



String Solver: Normalize Disequalities

Disequalities are handled analogously to equalities
• If |x·v|	≠	|v·w|, then trivially x·v ≠	v·w
• Otherwise, consider the normal forms of x·v and v·w from previous step

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w



String Solver: Normalize Disequalities
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w

Disequalities are handled analogously to equalities

“abb” v “b”

x,		y,		z·”aab” w,		u·“b”

≠

z u

x·v v·w



String Solver: Normalize Disequalities
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w

z

v u “b”

≠“aab” v
?

Disequalities are handled analogously to equalities

“abb” u “b”

x,y,z·”aab” w,u·“b”

u“aab”

x:	z·“aab”

“b”

w:	u·“b”

v,zz

x·v:	z·“aab”	·v

v

v·w:	v·u·”b”

Goal: find any aligning component that is disequal

≠



String Solver: Normalize Disequalities
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

z

v u “b”

≠

“aab” v
Disequalities are handled analogously to equalities

“abb” u “b”

x,y,z·”aab” w,u·“b”

≠

u“aab”

x:	z·“aab”

“b”

w:	u·“b”

v,zz

x·v:	z·“aab”	·v

v

v·w:	v·u·”b”

|z|	=	|v| and z	≠	v

≠



String Solver: Cardinality
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z



String Solver: Cardinality
Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality• MS may be unsatisfiable since alphabet A is finite
• For instance, if:
• A is a finite alphabet of 256 characters, and
• MS entails the existence of 257 distinct strings of length 1
Þ Then MS is unsatisfiable

\ (distinct(s1,	…,	s257)	Ù |s1|	=	…	=	|s257|)	Þ |s1|	>	1

x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z



If all steps finish with no new lemmas:
1. Ms is Ts-satisfiable
2. Model can be computed based on normal forms

• String constants assigned to eq classes whose normal form is a variable
Length fixed by model from arithmetic solver

• Each variable interpreted as the valuation of the normal form of their eq class

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z



If all steps finish with no new lemmas:
1. Ms is Ts-satisfiable
2. Model can be computed based on normal forms

• String constants assigned to eq classes whose normal form is a variable
• Length fixed by model from arithmetic solver

• Each variable interpreted as the valuation of the normal form of their eq class

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb” u “b”

x,y,z·”aab” w,u·“b”

u“aab”

x:	z·“aab”

“b”

w:	u·“b”

v,zz

x·v:	z·“aab”	·v

v

v·w:	v·u·”b”



Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb
”

u “b”

x,y,z·”aab” w,u·“b”

u“aab”

x:	z·“aab”

“b”

w:	u·“b”

v,zz

x·v:	z·“aab”	·v

v

v·w:	v·u·”b”

Example:

Simplex

|z|	=	1 |v|	=	1 |u|	=	3

model



Example:
• z assigned to “c”

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb
”

u “b”

x,y,z·”aab” w,u·“b”

u“aab”

x:	“c”·“aab”

“b”

w:	u·“b”

v,z“c”

x·v:	“c”·“aab”	·v

v

v·w:	v·u·”b”

|z|	=	1 |v|	=	1 |u|	=	3



Example:
• z assigned to “c”
• v assigned to “d”

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb” u “b”

x,y,z·”aab” w,u·“b”

u“aab”

x:	“c”·“aab”

“b”

w:	u·“b”

v,z“c”

x·v:	“c”·“aab”	·”d”

“d”

v·w:	“d”·u·”b”

|v|	=	1 |u|	=	3



Example:
• z assigned to “c”
• v assigned to “d”
• u assigned to “aaa”

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb
”

u “b”

x,y,z·”aab” w,u·“b”

“aaa”“aab”

x:	“c”·“aab”

“b”

w:	“aaa”·“b”

v,z“c”

x·v:	“c”·“aab”	·”d”

“d”

v·w:	“d”·”aaa”·”b”

Cardinality step ensures enough enough constants exist

|u|	=	3



Example:
• z assigned to “c”
• v assigned to “d”
• u assigned to “aaa”
• Variables assigned to value of the normal form of their eq classes:

• x,y assigned to “caab”, w	assigned to “aaab”

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb
”

u “b”

x,y,z·”aab” w,u·“b”

“aaa”“aab”

x:	“c”·“aab”

“b”

w:	“aaa”·“b”

v,z“c”

x·v:	“c”·“aab”	·”d”

“d”

v·w:	“d”·”aaa”·”b”



Example:
• z assigned to “c”
• v assigned to “d”
• u assigned to “aaa”
• Variables assigned to value of the normal form of their eq classes:

• x,y assigned to “caab”, w	assigned to “aaab”

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

String Solver: Return SAT
x	=	z·”aab”
y	=	x

w	=	u·”b”
x·v ≠	v·w
v	≠	z

“abb
”

u “b”

x,y,z·”aab” w,u·“b”

“aaa”“aab”

x:	“c”·“aab”

“b”

w:	“aaa”·“b”

v,z“c”

x·v:	“c”·“aab”	·”d”

“d”

v·w:	“d”·”aaa”·”b”

Saturation criteria of procedure ensures this model satisfies Ms



Advanced Topics

• Finite model finding for strings
• Context-dependent simplification for extended string constraints
• Regular expression elimination



Finite Model Finding for Strings



Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables x1,	…,	xn
Þ Improved solver’s ability to answer “SAT” for problems with small models

Si=1…n|xi|≤ 0 ¬Si=1…n|xi| ≤ 0Search for models 
where sum of 

lengths is 0

Search for models 
where sum of 

lengths is 1

etc.

…..
Si=1…n|xi| ≤ 1 ¬ Si=1…n|xi| ≤ 1

Si=1…n|xi| ≤ 2 ¬ Si=1…n|xi| ≤ 2



Finite Model Finding

• Minimize sum of lengths Si=1…n|xi| ≤ 0
• Which variables have unbounded length?

• Can include a subset of the overall input variables in this sum
• Above, |x+u|≤n	implies upper bounds on the length of z, y, w, v

• Reduces the overall sum of lengths in the search

x	=	“ab”·z
x	=	y·u·v Ú u	≠	“abc”

w	=	x·”ab”	Úw	=	y·”cde”



Finite Model Finding

• Minimize sum of lengths Si=1…n|xi|≤ 0
• Which variables have unbounded length?

• Can include a subset of the overall input variables in this sum
Above, upper bound on |x	+	u| implies upper bounds on the length of z, y, w, v

• Reduces the overall sum of lengths

x	=	“ab”·z
x	=	y·u·v Ú u	≠	“abc”

w	=	x·”ab”	Úw	=	y·”cde”



Context-Dependent Simplification 
for Extended String Constraints



Extended String Constraints
• Basic terms
• String and integer variables, constants, concatenation, length, and LIA-terms

• Extended string terms:
• Substring: substr(x,	1,	3)	

(the substring of x starting at pos. 1 of length at most 3)
• String contains: contains(x,	”abc”)

(true iff x contains the substring “abc”)
• Find “index of”: indexof(x,	”d”,	5)

(the pos. of the first occurrence of “d” in x, starting from position 5, or -1 if it does not exist)
• String replace: replace(x,	“a”,	“b”)

(the result of replacing the first occurrence of “a” in x, if any, with “b”)

¬contains(substr(x,	0,	3),	“a”) Ù 0	£ indexof(x,	“ab”,	0)	<	4Example: 
75



Processing Extended String Constraints

¬contains(x,	“a”)

76



• Naively, by reduction to basic constraints + bounded "

• Approach used by many current solvers 
[Bjorner et al 2009,Zheng et al 2013,Li et al 2013,Trinh et al 2014]

Processing Extended String Constraints

¬contains(x,	“a”)

77



• Naively, by reduction to basic constraints + bounded "

• Approach used by many current solvers 
[Bjorner et al 2009,Zheng et al 2013,Li et al 2013,Trinh et al 2014]

Processing Extended String Constraints

¬contains(x,	“a”)

"0	£n	<	|x|.	substr(x,	n,	1)	¹ “a” Expand contains

78



• Naively, by reduction to basic constraints + bounded "

• Approach used by many current solvers 
[Bjorner et al 2009,Zheng et al 2013,Li et al 2013,Trinh et al 2014]

Processing Extended String Constraints

¬contains(x,	“a”)

"0	£n	<	|x|.	substr(x,	n,	1)	¹ “a”

substr(x,	0,	1)	¹ “a” Ù… Ù substr(x,	4,	1)	¹ “a”

79

Expand contains

Assuming bound |x|	£ 5



• Naively, by reduction to basic constraints + bounded "

• Approach used by many current solvers 
[Bjorner et al 2009,Zheng et al 2013,Li et al 2013,Trinh et al 2014]

Processing Extended String Constraints

¬contains(x,	“a”)

"0	£n	<	|x|.	substr(x,	n,	1)	¹ “a”

substr(x,	0,	1)	¹ “a” Ù… Ù substr(x,	4,	1)	¹ “a”

x	=	z11×k1×z21 Ù
|z11|	=	0 Ù
k1	¹ “a” Ù

x	=	z14×k4×z24 Ù
|z14|	=	4 Ù
k4	¹ “a”

... Expand substr

Expand contains

80

Assuming bound |x|	£ 5



• Naively, by reduction to basic constraints + bounded "

• Approach used by many current solvers 
[Bjorner et al. 2009, Zheng et al. 2013, Li et al. 2013, Trinh et al. 2014]

Processing Extended String Constraints

¬contains(x,	“a”)

"0	£n	<	|x|.	substr(x,	n,	1)	¹ “a”

substr(x,	0,	1)	¹ “a” Ù… Ù substr(x,	4,	1)	¹ “a”

81

x	=	z11×k1×z21 Ù
|z11|	=	0 Ù
k1	¹ “a” Ù

x	=	z14×k4×z24 Ù
|z14|	=	4 Ù
k4	¹ “a”

... Expand substr

Expand contains

Assuming bound |x|	£ 5



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(x,“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

82



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

x	=	y×“d”
y	=	“ab” Ú y	=	“ac”

x	=	z11×k1×z21
|z11|	=	0
k1	¹“	a”

x	=	z14×k4×z24
|z14|	=	4
k4	¹“a”

...
Expand and eliminate extended symbols

83

¬contains(x,“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

x	=	y×“d”
y	=	“ab” Ú y	=	“ac”

x	=	z11×k1×z21
|z11|	=	0
k1	¹“	a”

x	=	z14×k4×z24
|z14|	=	4
k4	¹“a”

...
Expand and eliminate extended symbols

84

¬contains(x,“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

SATUNSAT or



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

x	=	y×“d”
y	=	“ab” Ú y	=	“ac”

x	=	z11×k1×z21
|z11|	=	0
k1	¹“	a”

x	=	z14×k4×z24
|z14|	=	4
k4	¹“a”

...

85

¬contains(x,“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

SATUNSAT or

Must deal with a large constraint set



(Eager) Expansion of Extended Constraints

SAT
Solver

Arithmetic
Solver

String
Solver

x	=	y×“d”
y	=	“ab”	Ú y	=	“ac”

x	=	z11×k1×z21
|z11|	=	0	
k1	¹“	a”	

x	=	z14×k4×z24
|z14|	=	4
k4	¹“a”

...

86

¬contains(x,“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

SATUNSAT or

…what if we simplify the input?



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

• Leads to smaller inputs, simpler procedures 

¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

87



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

• Leads to smaller inputs, simpler procedures 

¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

since x	=	y×”d”¬contains(y×“d”,	“a”)
y	=	“ab” Ú y	=	“ac”

88



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

• Leads to smaller inputs, simpler procedures 

¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

since x	=	y×”d”¬contains(y×“d”,“a”)Ù
y=“ab” Ú y=“ac”

89

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac” since contains(y×“d”,	”a”)	Û contains(y,	“a”)



SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

Leads to smaller inputs
Some problems can be solved by simplification alone

¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

since x	=	y×”d”¬contains(y×“d”,“a”)Ù
y=“ab” Ú y=“ac”

90

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac” since contains(y×“d”,	”a”)	Û contains(y,“a”)



¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

91



(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

Simplify the input

92

¬contains(x,	“a”)
x	=	y×“d”

y	=	“ab” Ú y	=	“ac”



¬contains(y,“a”)Ù
y=“ab” Ú y=“ac” ¬contains(y,	“a”)

y	=	“ab”

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,“a”)
y=“ab” Ú y=“ac”

93



¬contains(y,“a”)
y=“ab”

¬contains(y,	“a”)
y	=	“ab”

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac”
¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

contains(y,	”a”)		Û
(y	=	z11×k1×z21 Ù
|z11|	=	0 Ù
k1	¹ “a” Ù

y	=	z14×k4×z24 Ù
|z14|	=	4 Ù
k4	¹ “a”)

...

94



¬contains(y,“a”)
y=“ab”

¬contains(y,	“a”)
y	=	“ab”

¬contains(y,“a”)Ù
y=“ab” Ú y=“ac”
¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

95

Still have a large constraint contains(y,	”a”)		Û
(y	=	z11×k1×z21 Ù
|z11|	=	0 Ù
k1	¹ “a” Ù

y	=	z14×k4×z24 Ù
|z14|	=	4 Ù
k4	¹ “a”)

...



¬contains(y,“a”)Ù
y=“ab” Ú y=“ac” ¬contains(y,	“a”)

y	=	“ab”

(Lazy) Expansion + Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

What if we simplify based
on the context?

96

contains(y,	”a”)		Û
(y	=	z11×k1×z21 Ù
|z11|	=	0 Ù
k1	¹ “a” Ù

y	=	z14×k4×z24 Ù
|z14|	=	4 Ù
k4	¹ “a”)

...



¬contains(y,“a”)
y=“ab”

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

Since contains(y,	”a”) is true when y	=	“ab” … 

¬contains(y,	“a”)
y	=	“ab”

97



¬contains(y,	“a”)
y	=	“ab”

(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

y=	“ab”Þ contains(y,	”a”)	

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)

98



(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ab”

99

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)



(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ac”
¬y	=	“ab”

100

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)



¬contains(y,“a”)
y=“ac”
¬y=“ab”

(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ac”
¬y	=	“ab”

contains(y,	”a”) is also true when y	=	“ac” … 

101

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)



¬contains(y,“a”)
y=“ac”
¬y=“ab”

(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ac”
¬y	=	“ab”

y	=	“ac”Þ contains(y,	”a”)

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)
¬y	=	“ac”	Ú contains(y,	”a”)

102



(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ac”
¬y	=	“ab”

UNSAT
103

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)
¬y	=	“ac”	Ú contains(y,	”a”)



(Lazy) Expansion + Context-Dependent Simplification

SAT
Solver

Arithmetic
Solver

String
Solver

¬contains(y,	“a”)
y	=	“ac”
¬y	=	“ab”

Did not need to fully 
expand contains!

context-dependent simplification
[Reynolds et al CAV 2017] 104

¬contains(y,	“a”)
y	=	“ab” Ú y	=	“ac”

¬y	=	“ab”	Ú contains(y,	”a”)
¬y	=	“ac”	Ú contains(y,	”a”)

UNSAT



Results on Symbolic Execution [Reynolds et al. CAV 17]

• cvc4+fs (finite model finding + context-dependent simpl.) solves 23,802 benchmarks in 5h8m 
• Without finite model finding, solves 23,266 benchmarks in 8h46m
• Without either finite model finding or cd-simplification, solves  22,607 benchmarks in 6h38m



Many Simplification Rules for Strings

Unlike arithmetic:

… simplification rules for strings are highly non-trivial:

x	+	x	+	7*y	=	y	- 4 2*x	+	6*y	+	4	=	0

contains(“abcde”,	“b”× x× “a”)

substr(x× “abcd”,	1	+	len(x),2)

indexof(“abc”×x,	“a”×x,1)

replace(“a”×x,	“b”,y)

“bc”

^

-1

con(“a”,	replace(x,	“b”,	y))

contains(x×“ac”×y,	“b”) contains(x,	“b”)	Ú contains(y,	“b”)

106



Simplification based on High-Level Abstractions

Rules based on high-level abstractions 
• When viewing strings as #characters (e.g. reasoning about their length):

• When considering the containment relationship between strings:

• When viewing strings as multisets of characters:

contains(replace(x,	y,	z),	z) contains(x,	y)	Ú contains(x,	z)

x×x×y×”ab”	= x×”bbbbbb”×y ^

contains(substr(x,	i,	j),	x×”a”) ””

since LHS contains at least 1 more
occurrences of “a”

since the second argument is
longer than the first

[Reynolds et al. CAV 19]



Impact of Aggressive Simplification

CVC4 implements >3000 lines of C++ for simplification rules (and growing)
Important aspect of modern string solving

-arith: w/o arithmetic simplifications 
-contain: w/o contain-based simplifications
-mset: w/o multiset-based simplifications

[Reynolds et al. CAV 19]



Regular Expression Elimination 



Regular Expression Elimination

CVC4 supports regular expressions, via:

• Decomposing memberships
E.g. x	Î R1	È R2		Þ x	Î R1	Ú x	Î R2 ,	 x	Î R1	Ç R2		Þ x	Î R1	Ù x	Î R2	

• Intersection (modulo equality):
E.g. (x	Î R1	Ù y	Î R2 Ù x	=	y)	Þ xÎ compute_intersection(R1, R2)

• Unfolding 
E.g. x	Î R*	Þ x	=	”” Ú (	x	=	x1×x2 Ù x1	Î R	Ù x2	Î R*	)	for fresh x1,	x2

• Elimination based on reduction to extended string constraints



Regular Expression Elimination

Idea: reduce RE to extended string constraints
Possible for many regular expression memberships that occur in practice:

CVC4 supports (aggressive) elimination techniques for RE like those above
Utilizes existing support for extended functions

x	Î A*×”abc”× A* contains(x,	”abc”)

Ûx	Î A× A*×A

Û
|x|	≥	2

x	Î A*×”a”× A*×”bcd”× A* Û contains(x,	”a”)	Ù
contains(substr(x,	indexof(x,	”a”,	1)	+	1,	|x|),	”bcd”)



String Theory Solver (Extended)
• Preprocess based on reg-exp elimination
• Then, run inference strategy:

1. Split on sum of lengths bound (FMF)
2. Process length constraints
3. Check for equality conflicts (congruence closure)
4. Context-dependent simplification for extended functions
5. Normalize string equalities
6. Normalize string disequalities
7. Check cardinality constraints
8. Reduce extended functions

Length

Cong Closure

Normalize Eq

Normalize Deq

Cardinality

SAT

Lemmas

(Extended)
Input

to the SAT solver

Ms

FMF

Reduce EXTF

Simplify EXTF



Conclusions

• CVC4 supports DPLL(T) theory solver for strings and regular 
expressions
• Efficient in practice (incomplete) procedure for word equations with length
• More advanced features like FMF, context-dependent simplification, RE 

elimination
• Also supports: str.code, str.<=, str.to-int, str.from-int, str.replaceall

• Open-source, available at https://cvc4.github.io/

Thanks for listening

https://cvc4.github.io/

