SMT String Solving in CVC4

Andrew Reynolds \& Cesare Tinelli
The University of Iowa

MOSCA 2019
May 6, 2019

Satisfiability Modulo Theories (SMT) Solvers

Many applications:

- Software verification
- Automated theorem proving
- Symbolic execution
- Security analysis

In this talk:

- How SMT Solvers (CVC4) handle string constraints

The CVC4 SMT Solver

Support for many theories and features

- UF, (non)linear arithmetic, arrays
- Bit-vectors, floating point
- Finite sets and relations, (co)datatypes
\Rightarrow Strings and regular expressions

Co-developed at Stanford and University of Iowa

- Project Leaders:

Clark Barrett and Cesare Tinelli

- String solver developers:

Andrew Reynolds, Tianyi Liang, Nestan Tsiskaridze, Andres Noetzli

Overview

- How SMT string solvers work:
- Basic architecture (DPLL(T))
- Core Theory Solver for Word Equations with Length Constraints
- Advanced Features
- Finite model finding
- Context-dependent simplification for extended string constraints
- Regular expression elimination

SMT solvers

Efficient tools for satisfiability modulo theories
Verification Conditions, Path Constraints, etc.

SMT Solver

Datatypes solver

SAT Solver

Bit-vector solver

SMT solvers

Efficient tools for satisfiability modulo theories

$$
(\mathrm{A}[\mathrm{x}]+\mathrm{B}[\mathrm{x}]>0 \vee \mathrm{x}+\mathrm{y}>0) \wedge\left(\operatorname{cons}\left(\text { " } \mathrm{abc} \text { ", } \mathrm{d}_{1}\right) \neq \mathrm{d}_{2} \vee \mathrm{x}<0\right)
$$

SMT solvers

Efficient tools for satisfiability modulo theories

$$
(\mathrm{A}[\mathrm{x}]+\mathrm{B}[\mathrm{x}]>0 \vee \mathrm{x}+\mathrm{y}>0) \wedge\left(\operatorname{cons}\left({ }^{\prime a b c} \text { ", } \mathrm{d}_{1}\right) \neq \mathrm{d}_{2} \vee \mathrm{x}<0\right)
$$

SMT solvers

Our focus: the theory of strings and linear arithmetic $T_{\text {SLIA }}$

$$
x=" a b " \cdot z \wedge|x|+|y| \leq 5 \wedge(" a b c d " \cdot x=y \vee|x|>5)
$$

Theory of Strings + Linear Arithmetic ($T_{\text {SLIA }}$)

Sorts:

- Integers Int
- Strings String, interpreted as A* for finite alphabet A

Terms:

- String Variables: $\mathrm{x}, \mathrm{y}, \mathrm{z}$
- Integer Variables: i, j, k
- String Constants: "", "abc", "AAAAA" , "http"
- String Concatenation: $\mathrm{x} \cdot{ }^{\text {" }} \mathrm{abc}$ ", $\mathrm{x} \cdot \mathrm{y} \cdot \mathrm{z} \cdot \mathrm{w}$
- String Length: |x|

Formulas are:

- Equalities and disequalities between string terms
- Linear arithmetic constraints: $|\mathrm{x}|+4>|\mathrm{y}|$

Example:

$$
x \cdot " a "=y, y \neq " b " \cdot z,|y|>|x|+2
$$

Decidability: unknown, regardless, many problems can be solved efficiently in practice

$\mathrm{T}_{\text {sLIA }}$ String Solver for $\operatorname{DPLL}(\mathrm{T})$

Achieved as a Cooperation between:

Arithmetic
 Solver

String
Solver

$\mathrm{T}_{\text {sLIA }}$ String Solver for DPLL(T)

Set of $T_{\text {SLIA }}$-formulas in clausal normal form (CNF)

Arithmetic
 Solver

String
 Solver

$\mathrm{T}_{\text {sLIA }}$ String Solver for DPLL(T)

Arithmetic
 Solver

String
 Solver

\Rightarrow Either determines no satisfying assignments for input exist

$\mathrm{T}_{\text {sLIA }}$ String Solver for DPLL(T)

Arithmetic
 Solver

String
 Solver

\Rightarrow... or returns a propositionally satisfying assignment

$\mathrm{T}_{\text {sLIA }}$ String Solver for DPLL(T)

\Rightarrow Constraints distributed to arithmetic and string solvers

$\mathrm{T}_{\text {SLIA }}$ String Solver for $\operatorname{DPLL}(\mathrm{T})$

$\mathrm{T}_{\text {SLIA }}$ String Solver for $\operatorname{DPLL}(\mathrm{T})$

\Rightarrow or return theory lemmas (valid $\mathrm{T}_{\mathrm{LIA}} / \mathrm{T}_{\mathrm{S}}$-formulas) to SAT solver

$\mathrm{T}_{\text {sLIA }}$ String Solver for $\operatorname{DPLL}(\mathrm{T})$

\Rightarrow and repeat

Inside a DPLL(T) Theory Solver

Given a set of T-literals $M_{T,} \begin{gathered}x=" a b " \cdot z \\ \text { "abcd"•x }=y\end{gathered}$
Should the solver send a theory lemma to the SAT solver?

- no => return unknown, or
return a model (a satisfying assignment)
- yes => which lemma?
- In typical DPLL(T) theory solvers (e.g. LIA) theory lemmas \Leftrightarrow T-conflicts $\neg\left(\mathrm{L}_{1} \wedge \ldots \wedge \mathrm{~L}_{\mathrm{n}}\right)$ for some T -unsatisfiable $\left\{\mathrm{L}_{1}, \ldots, \mathrm{~L}_{\mathrm{n}}\right\} \subseteq \mathrm{M}_{\mathrm{T}}$
- In string solver, theory lemmas may introduce new literals
- Will describe a strategy for strings

Arithmetic Theory Solver

Decision procedure:
T-conflicts based on a standard procedure, e.g. Simplex

Properties:

- Sound, lemmas it generates are LIA-valid
- Model-sound, "SAT" can be trusted
- Terminating, in the context of DPLL(T)

Only generates finitely many lemmas
\therefore Complete

String Theory Solver

Inference strategy:

1. Process length constraints
2. Check for equality conflicts (congruence closure)
3. Normalize string equalities
4. Normalize string disequalities
5. Check cardinality constraints

String Solver

Running example:

$$
\mathrm{M}_{\mathrm{s}}\left\{\begin{array}{c}
\mathrm{x}=\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{a}^{2}{ }^{\prime \prime} \\
\mathrm{y}=\mathrm{x} \\
\mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime} \\
\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w} \\
\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}
\end{array}\right.
$$

String Solver

String Solver: Process Length

$$
\mathrm{M}_{\mathrm{s}}\left\{\begin{array}{c}
\mathrm{x}=\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{aab}^{\prime \prime} \\
\mathrm{y}=\mathrm{x} \\
\mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime} \\
\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w} \\
\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}
\end{array}\right.
$$

String Solver: Process Length

$\mathrm{M}_{\mathrm{s}}\left\{\begin{array}{c}\mathrm{x}=\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{aab}^{\prime \prime} \\ \mathrm{y}=\mathrm{x} \\ \mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime} \\ \mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w} \\ \mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}\end{array}\right.$

- For each term of type string in M_{s} :
returns a lemma giving the definition of its length:

$|" b "|=1$
$|" a a b "|=3$
$|\mathrm{x} \cdot \mathrm{v}|=|\mathrm{x}|+|\mathrm{v}|$
$|z \cdot " \mathrm{aab} "|=|\mathrm{z}|+3 \quad\left|\mathrm{u} \cdot " \mathrm{~b} \mathrm{~b}^{\prime \prime}\right|=|\mathrm{u}|+1 \quad|\mathrm{v} \cdot \mathrm{w}|=|\mathrm{v}|+|\mathrm{w}|$
- For each variable of type string in M_{s} :
returns an emptiness splitting lemma:

$$
x=" " \vee|x| \geq 1 \quad y=" \prime \vee|y| \geq 1
$$

String Solver: Process Length

String Solver: Process Length

String Solver: Congruence Closure

String Solver: Congruence Closure

$$
\mathrm{M}_{\mathrm{s}}\left\{\begin{array}{c}
\mathrm{x}=\mathrm{z} \cdot " \mathrm{aab}{ }^{\prime \prime} \\
\mathrm{y}=\mathrm{x} \\
\mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime} \\
\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w} \\
\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}
\end{array}\right.
$$

- Group terms by equivalence classes:

String Solver: Congruence Closure

$$
\mathrm{M}_{\mathrm{s}}\left\{\begin{array}{c}
\mathrm{x}=\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{abab}^{\prime \prime} \\
\mathrm{y}=\mathrm{x} \\
\mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime} \\
\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w} \\
\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}
\end{array}\right.
$$

- Group terms by equivalence classes:

return lemma corresponding to T_{5}-conflict
if disequal terms in the same equivalence class

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

String Solver: Normalize Equality

- Compute normal forms for equivalence classes

- A normal form is a concatenation of string terms $r_{1} \cdot \ldots \cdot r_{n}$
where each ri_{i} is the representative of its equivalence class
Restriction: string constants must be chosen as representatives
- An equivalence class can be assigned a normal form $r_{1} \cdot \ldots \cdot r_{n}$ if:

Each non-variable term in it can be expanded (modulo equality and rewriting) to $r_{1} \cdot \ldots \cdot r_{n}$

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Normal forms computed by a bottom-up procedure

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Normal forms computed by a bottom-up procedure

- First, compute containment relation induced by concatenation terms
- To compute a n.f. for eq-class of $x \cdot v$, we must first compute a n.f. for eq-class of x and v
- This relation is guaranteed to be acyclic due to length elaboration step (cycle \Rightarrow LIA-conflict)

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

Normal forms computed by a bottom-up procedure

- First, compute containment relation induced by concatenation terms
- To compute a n.f. for eq-class of $x \cdot v$, we must first compute a n.f. for eq-class of x and v
- This relation is guaranteed to be acyclic due to length processing step (cycle \Rightarrow LIA-conflict)
- Base case: eqc containing only variables can be assigned representative as a normal form
- Inductive case: compare the expanded form $\mathrm{t}_{1}, \ldots, \mathrm{t}_{\mathrm{n}}$ of each non-variable term t
- If $\mathrm{t}_{1} \cong \ldots \cong \mathrm{t}_{\mathrm{n}}$, assign to t . If there exists distinct t_{i}, t_{i}, then propagate or split

String Solver: Normalize Equality

String Solver: Normalize Equality

Single non-variable string term \Rightarrow assign

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

String Solver: Normalize Equality

$\mathrm{x}=\mathrm{z} \cdot " \mathrm{aab}{ }^{\prime \prime}$
$\mathrm{y}=\mathrm{x}$
$\mathrm{w}=\mathrm{u} \cdot " \mathrm{~b} "$
$\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w}$
$\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}$

Equivalence class with two non-variable terms with distinct expanded forms:

- $\mathrm{x} \cdot \mathrm{v}=\left(\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{aab}{ }^{\prime \prime}\right) \cdot \mathrm{v}=\mathrm{z} \cdot{ }^{\prime \prime} \mathrm{aab}{ }^{\prime \prime} \cdot \mathrm{v}$
$\cdot \mathrm{v} \cdot \mathrm{w}=\mathrm{v} \cdot\left(\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime}\right)=\mathrm{v} \cdot \mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime}$

String Solver: Normalize Equality

String Solver: Normalize Equality

Goal: split strings so that all aligning components are equal

V	u	"b"

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

- Consider three cases for making these two terms equal:

Z	"aab"	V

II \quad When $|z|=|v|$
V u

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

- Consider three cases for making these two terms equal:

Z		"aab"	V
Z	v'	When $\|z\|<\|\mathrm{v}\|$	
$\underline{\text { II }}$			
		u	"b"

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w
\end{gathered}
$$

- Consider three cases for making these two terms equal:

Z------		"aab"	V
II		When $\|z\|>\|v\|$	
V	Z ${ }^{\prime}$		
V		u	"b"

String Solver: Normalize Equality

- Consider:

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

Z	"aab"	V

II

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b^{\prime \prime} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

Recompute congruence closure

String Solver: Normalize Equality

$$
\begin{gathered}
x=z \cdot " a a^{\prime \prime} \\
y=x \\
w=u \cdot{ }^{\prime \prime} b^{\prime \prime} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

Recompute congruence closure and normal forms

String Solver: Normalize Equality

$\mathrm{x}=\mathrm{z} \cdot " \mathrm{aab}{ }^{\prime \prime}$
$\mathrm{y}=\mathrm{x}$
$\mathrm{w}=\mathrm{u} \cdot{ }^{\prime \prime} \mathrm{b}^{\prime \prime}$
$\mathrm{x} \cdot \mathrm{v}=\mathrm{v} \cdot \mathrm{w}$
$\mathrm{x} \cdot \mathrm{v} \neq \mathrm{w}$
$\mathrm{z}=\mathrm{v}$

Recompute congruence closure and normal forms

String Solver: Normalize Equality

$\mathrm{v} \cdot{ }^{\text {"abb" }} \cdot \mathrm{v} \stackrel{?}{=} \mathrm{v} \cdot \mathrm{u} \cdot \mathrm{"b}{ }^{\prime}$

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b^{\prime \prime} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

V	"aab"	?

V u

String Solver: Normalize Equality

$\mathrm{v} \cdot{ }^{\prime \mathrm{aab}} \mathrm{C} \cdot \mathrm{v} \stackrel{?}{=} \mathrm{v} \cdot \mathrm{u} \cdot \mathrm{"b}{ }^{\prime \prime}$

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b^{\prime \prime} \\
x \cdot v=v \cdot w \\
x \cdot v \neq w \\
z=v
\end{gathered}
$$

\square

\square
repeat the process on these components
\square

Splitting on String Equalities

Choosing how to process equalities is highly non-trivial and critical to performance:

- Prefer propagations over splits Infer $\mathrm{x} \cdot \mathrm{w}=\mathrm{y} \cdot \mathrm{w} \Rightarrow \mathrm{x}=\mathrm{y}$ before $\mathrm{x} \cdot \mathrm{w}=\mathrm{z} \cdot \mathrm{v} \Rightarrow\left(\mathrm{x}=\mathrm{z} \cdot \mathrm{x}^{\prime} \vee \mathrm{z}=\mathrm{x} \cdot \mathrm{z}^{\prime}\right)$
- Can consider both the prefix and suffix of strings

Infer $w \cdot x=w \cdot y \Rightarrow x=y$

- Use length entailment [Zheng et al 2015]

If $|x|>|y|$ is entailed by the arith. solver, then $x \cdot w=y \cdot v \wedge|x|>|z| \Rightarrow x=y \cdot x^{\prime}$

Splitting on String Equalities

Choosing how to process equalities is highly non-trivial and critical to performance:

- Propagation based on adjacent constants
$x \cdot " b "=$ "aab" $\cdot \mathrm{y} \Rightarrow \mathrm{x}=$ "aa" $\cdot \mathrm{x}$ ', since "b" cannot overlap with prefix "aa"
- Special treatment for looping word equations [Liang et al 2014]
- splitting leads to non-termination; reduce to RE membership instead
- e.g. $x \cdot " b a "=" a b " \cdot x \Rightarrow x \in(" a b ") *$."a"
- Deduced string equalities are not sent as unit lemmas instead they are maintained internally

String Solver: Normalize Disequalities

$$
\text { modified example }\left\{\begin{array}{c}
\mathrm{x}=\mathrm{z} \cdot " \mathrm{aab} " \\
\mathrm{y}=\mathrm{x} \\
\mathrm{w}=\mathrm{u} \cdot " \mathrm{~b} " \\
\mathrm{x} \cdot \mathrm{v} \neq \mathrm{v} \cdot \mathrm{w}
\end{array}\right.
$$

String Solver: Normalize Disequalities

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v \neq v \cdot w
\end{gathered}
$$

Disequalities are handled analogously to equalities

- If $|x \cdot v| \neq|v \cdot w|$, then trivially $x \cdot v \neq v \cdot w$
- Otherwise, consider the normal forms of $\mathrm{X} \cdot \mathrm{v}$ and $\mathrm{v} \cdot \mathrm{W}$ from previous step

String Solver: Normalize Disequalities

$x=z \cdot " a a b "$
$y=x$
$w=u \cdot{ }^{\prime \prime} b^{\prime \prime}$
$x \cdot v \neq v \cdot w$

Disequalities are handled analogously to equalities

String Solver: Normalize Disequalities

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v \neq v \cdot w
\end{gathered}
$$

Disequalities are handled analogously to equalities

Goal: find any aligning component that is disequal

\square
u
" $0^{\prime \prime}$

String Solver: Normalize Disequalities

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

Disequalities are handled analogously to equalities

z	"aab"	V

* $\quad|\mathrm{z}|=|\mathrm{v}|$ and $\mathrm{z} \neq \mathrm{v}$

V	u	"b"

String Solver: Cardinality

$$
\begin{gathered}
x=z \cdot " a a b^{\prime \prime} \\
y=x \\
w=u \cdot " b^{\prime \prime} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

String Solver: Cardinality

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b " \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

- M_{S} may be unsatisfiable since alphabet A is finite
- For instance, if:

- A is a finite alphabet of 256 characters, and
- M_{S} entails the existence of 257 distinct strings of length 1
\Rightarrow Then M_{S} is unsatisfiable
$\therefore\left(\operatorname{distinct}\left(\mathrm{s}_{1}, \ldots, \mathrm{~s}_{257}\right) \wedge\left|\mathrm{s}_{1}\right|=\ldots=\left|\mathrm{s}_{257}\right|\right) \Rightarrow\left|\mathrm{s}_{1}\right|>1$

String Solver: Return SAT

$$
\begin{gathered}
x=z \cdot " a a b " \\
y=x \\
w=u \cdot " b^{\prime \prime} \\
x \cdot v \neq v \cdot w \\
v \neq z
\end{gathered}
$$

If all steps finish with no new lemmas:

1. M_{s} is T_{s}-satisfiable
2. Model can be computed based on normal forms

- String constants assigned to eq classes whose normal form is a variable

Length fixed by model from arithmetic solver

- Each variable interpreted as the valuation of the normal form of their eq class

String Solver: Return SAT

If all steps finish with no new lemmas:

1. M_{s} is T_{s}-satisfiable
2. Model can be computed based on normal forms

- String constants assigned to eq classes whose normal form is a variable
- Length fixed by model from arithmetic solver
- Each variable interpreted as the valuation of the normal form of their eq class

String Solver: Return SAT

String Solver: Return SAT

Example:

- z assigned to "c"

String Solver: Return SAT

Example:

- z assigned to "c"
- v assigned to "d"

String Solver: Return SAT

Example:

- z assigned to "c"
- v assigned to "d"
- u assigned to "aaa"

String Solver: Return SAT

Example:

- z assigned to "c"
- v assigned to "d"
- u assigned to "aaa"
- Variables assigned to value of the normal form of their eq classes:
- x,y assigned to "caab", w assigned to "aaab"

String Solver: Return SAT

Example:

- z assigned to "c"
- v assigned to "d"

- u assigned to "aaa"
- Variables assigned to value of the normal form of their eq classes:
- x, y assigned to "caab", w assigned to "aaab"

Saturation criteria of procedure ensures this model satisfies M_{s}

Advanced Topics

- Finite model finding for strings
- Context-dependent simplification for extended string constraints
- Regular expression elimination

Finite Model Finding for Strings

Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$
\Rightarrow Improved solver's ability to answer "SAT" for problems with small models

Finite Model Finding

- Minimize sum of lengths $\sum_{i=1 \ldots n}\left|x_{i}\right| \leq 0$
- Which variables have unbounded length?

$$
\begin{gathered}
x=" a b " \cdot z \\
x=y \cdot u \cdot v \vee u \neq " a b c " \\
w=x \cdot " a b " \vee w=y \cdot " c d e "
\end{gathered}
$$

Finite Model Finding

- Minimize sum of lengths $\sum_{\mathrm{i}=1 \ldots \mathrm{n}}\left|\mathrm{x}_{\mathrm{i}}\right| \leq 0$
- Which variables have unbounded length?

$$
\begin{gathered}
x=" a b " \cdot z \\
x=y \cdot u \cdot v \vee u \neq " a b c " \\
w=x \cdot " a b " \vee w=y \cdot " c d e "
\end{gathered}
$$

- Can include a subset of the overall input variables in this sum

Above, upper bound on $|x+u|$ implies upper bounds on the length of z, y, w, v

- Reduces the overall sum of lengths

Context-Dependent Simplification for Extended String Constraints

Extended String Constraints

- Basic terms

- String and integer variables, constants, concatenation, length, and LIA-terms
- Extended string terms:
- Substring: substr(x, 1, 3)
(the substring of x starting at pos. 1 of length at most 3)
- String contains: contains(x , "abc")
(true iff x contains the substring "abc")
- Find "index of": indexof(x, "d", 5)
(the pos. of the first occurrence of "d" in x, starting from position 5, or -1 if it does not exist)
- String replace: replace(x, "a", "b")
(the result of replacing the first occurrence of " a " in x, if any, with " b ")
Example: $\quad \neg$ contains $(\operatorname{substr}(\mathrm{x}, 0,3)$, "a") $\wedge 0 \leq \operatorname{indexof}(\mathrm{x}$, " ab ", 0$)<4$

Processing Extended String Constraints

\neg contains(x, "a")

Processing Extended String Constraints

- Naively, by reduction to basic constraints + bounded \forall

$$
\neg \operatorname{contains}(\mathrm{x}, ~ " \mathrm{a} \text { ") }
$$

Processing Extended String Constraints

- Naively, by reduction to basic constraints + bounded \forall

$$
\frac{\neg \operatorname{contains(x,~"a")}}{\forall 0 \leq \mathrm{n}<|\mathrm{x}| . \operatorname{substr}(\mathrm{x}, \mathrm{n}, 1) \neq{ }^{\prime \prime} \mathrm{a} "}
$$

Processing Extended String Constraints

- Naively, by reduction to basic constraints + bounded \forall

Processing Extended String Constraints

- Naively, by reduction to basic constraints + bounded \forall

Processing Extended String Constraints

- Naively, by reduction to basic constraints + bounded \forall

- Approach used by many current solvers

(Eager) Expansion of Extended Constraints

```
\negcontains(x,"a")
    x = y."d"
y="ab" \vee y = "ac"
```


String
Solver

(Eager) Expansion of Extended Constraints

(Eager) Expansion of Extended Constraints

(Eager) Expansion of Extended Constraints

(Eager) Expansion of Extended Constraints
 z14•k4•z24 |z11| = 0
|z14| = 4
k1 $\neq{ }^{\prime \prime} \mathrm{a}^{\prime \prime}$
$\mathrm{k} 4 \neq{ }^{\prime \prime} \mathrm{a}^{\prime}$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

$$
\begin{gathered}
\neg \text { contains }(x, " a ") \\
x=y \cdot " d " \\
y=" a b " \vee y=" a c "
\end{gathered}
$$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

$$
\text { since } x=y \cdot " d "
$$

$$
\begin{aligned}
& \neg \text { contains(} \mathrm{x}, \text { "a") } \\
& x=y \cdot{ }^{\prime} d^{\prime} \\
& y=" a b " \vee y=" a c " \\
& \neg \text { contains(y•"d", "a") } \\
& y=" a b " \vee y=" a c "
\end{aligned}
$$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

$$
\text { since } x=y . " d "
$$

$$
\text { since contains }(y \cdot " d ", " a ") \Leftrightarrow \operatorname{contains(y,~"a")~}
$$

$$
\begin{aligned}
& \neg \text { contains (x, "a") } \\
& x=y \text {."d" } \\
& y=" a b " \vee y=" a c "
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|}
\neg \text { contains }(y, " a ") \wedge \\
y=" a b " ~ \\
y= \\
\hline
\end{array}
\end{aligned}
$$

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)
(aiso calle normailzation or rewrite rules)

$$
\text { since } x=y . " d "
$$

Leads to smaller inputs
Some problems can be solved by simplification alone

$$
\begin{aligned}
& \neg \text { contains (x, "a") } \\
& x=y \cdot{ }^{\prime} d^{\prime} \\
& y=" a b " \vee y=" a c " \\
& \begin{array}{c}
\neg \text { contains }(y \cdot " d ", " a ") \wedge \\
y=" a b " \vee y=" a c "
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{|l|}
\neg \text { contains }(y, " a ") \wedge \\
y=" a b " ~ \\
y= \\
\end{array}
\end{aligned}
$$

(Lazy) Expansion + Simplification

```
\negcontains(x, "a")
    x = y."d"
y = "ab" v y = "ac"
```


Arithmetic
Solver

String
 Solver

(Lazy) Expansion + Simplification

$$
\begin{gathered}
\neg \text { contains (x, " "a") } \\
x=y \cdot d " \\
y=" a b " \vee y=" a c "
\end{gathered}
$$

$$
\begin{aligned}
& \text { } \neg \text { contains(} \mathrm{y} \text {, "a") } \\
& y=" a b " \vee y=" a c "
\end{aligned}
$$

Simplify the input

Arithmetic Solver

String Solver

(Lazy) Expansion + Simplification

(Lazy) Expansion + Simplification

(Lazy) Expansion + Simplification

(Lazy) Expansion + Simplification

What if we simplify based on the context?

(Lazy) Expansion + Context-Dependent Simplification

Since contains(y, "a") is true when $y=$ "ab" ...

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

Arithmetic
Solver
\neg contains $(\mathrm{y}$, " a ") $y=" a b "$

String
Solver

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

contains(y, "a") is also true when y = "ac" ...

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

(Lazy) Expansion + Context-Dependent Simplification

Arithmetic
Solver

Did not need to fully expand contains!

context-dependent simplification

Results on Symbolic Execution [Reynolds et al. CAV 17]

- cvc4+fs (finite model finding + context-dependent simpl.) solves
- Without finite model finding, solves
- Without either finite model finding or cd-simplification, solves

23,802 benchmarks in 5h8m
23,266 benchmarks in 8 h 46 m
22,607 benchmarks in 6 h 38 m

Many Simplification Rules for Strings

Unlike arithmetic:

$$
x+x+7 * y=y-4
$$

$$
2^{*} x+6^{*} y+4=0
$$

... simplification rules for strings are highly non-trivial:

substr(x• "abcd", $1+$ len(x),2)	"bc"
contains("abcde", "b" \times x "a")	\pm
contains(x."ac"•y, "b")	contains (x, "b") \vee contains (y , " b ")
indexof("abc" ${ }^{\text {c, " }}$ " ${ }^{\text {" }} \mathrm{x}, 1$)	-1
replace("a"•x, "b",y)	con("a", replace(x, "b", y))

Simplification based on High-Level Abstractions

[Reynolds et al. CAV 19]

Rules based on high-level abstractions

- When viewing strings as \#characters (e.g. reasoning about their length):

```
contains(substr(x, i, j), x`"a")
```

" $"$

since the second argument is longer than the first

- When considering the containment relationship between strings:

```
contains(replace(x, y, z), z)
```

contains $(\mathrm{x}, \mathrm{y}) \vee$ contains (x, z)

- When viewing strings as multisets of characters:

since LHS contains at least 1 more occurrences of "a"

Impact of Aggressive Simplification

Set		all	-arith	-contain	-msets	Z3	OSTRICH
	sat	7947	7746	$\mathbf{7 9 4 8}$	7946	4585	
CMU	unsat	$\mathbf{6 6}$	31	$\mathbf{6 6}$	$\mathbf{6 6}$	52	
	\times	173	409	172	174	3549	
	sat	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	$\mathbf{1 0}$	1	
TERMEQ	unsat	$\mathbf{4 9}$	36	27	$\mathbf{4 9}$	36	
	\times	22	35	44	22	44	
	sat	$\mathbf{1 3 0 2}$	1100	1289			
SLOG	unsat	$\mathbf{2 0 8 2}$	2075	$\mathbf{2 0 8 2}$			
	\times	7	7	7	7	216	20
	sat	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	$\mathbf{1 3 2}$	10	
APLAS	unsat	$\mathbf{2 9 2}$	291	171	171	94	
	\times	159	160	280	280	479	
	Sat	9391	9190	$\mathbf{9 3 9 2}$	9390	5696	1289
Total	unsat	$\mathbf{2 4 8 9}$	2440	2346	2368	2257	2082
	\times	361	611	503	483	4288	8870

[Reynolds et al. CAV 19]
-arith: w/o arithmetic simplifications -contain: w/o contain-based simplifications -mset: w/o multiset-based simplifications

CVC4 implements >3000 lines of C++ for simplification rules (and growing)
Important aspect of modern string solving

Regular Expression Elimination

Regular Expression Elimination

CVC4 supports regular expressions, via:

- Decomposing memberships

$$
\text { E.g. } x \in R_{1} \cup R_{2} \Rightarrow x \in R_{1} \vee x \in R_{2}, x \in R_{1} \cap R_{2} \Rightarrow x \in R_{1} \wedge x \in R_{2}
$$

- Intersection (modulo equality):

$$
\text { E.g. }\left(x \in R_{1} \wedge y \in R_{2} \wedge x=y\right) \Rightarrow x \in \text { compute_intersection }\left(R_{1}, R_{2}\right)
$$

- Unfolding

$$
\text { E.g. } x \in R^{*} \Rightarrow x=" \prime \prime \vee\left(x=x_{1} \cdot x_{2} \wedge x_{1} \in R \wedge x_{2} \in R^{*}\right) \text { for fresh } x_{1}, x_{2}
$$

- Elimination based on reduction to extended string constraints

Regular Expression Elimination

Idea: reduce RE to extended string constraints
Possible for many regular expression memberships that occur in practice:

$$
\mathrm{x} \in \mathrm{~A}^{*} . " \mathrm{a} " \cdot \mathrm{~A}^{*} . " \mathrm{bcd} \mathrm{D}^{\prime} \cdot \mathrm{A}^{*}
$$

$$
\Leftarrow
$$

contains(x, "a")^
contains(x, "a")^
contains(substr(x, indexof(x, "a", 1) + 1, |x|), "bcd")
contains(substr(x, indexof(x, "a", 1) + 1, |x|), "bcd")

CVC4 supports (aggressive) elimination techniques for RE like those above Utilizes existing support for extended functions

String Theory Solver (Extended)

Conclusions

- CVC4 supports DPLL(T) theory solver for strings and regular expressions
- Efficient in practice (incomplete) procedure for word equations with length
- More advanced features like FMF, context-dependent simplification, RE elimination
- Also supports: str.code, str.<=, str.to-int, str.from-int, str.replaceall
- Open-source, available at https://cvc4.github.io/

Thanks for listening

