SMT String Solving in CVC4

Andrew Reynolds & Cesare Tinelli

The University of lowa

MOSCA 2019
May 6, 2019

Satisfiability Modulo Theories (SMT) Solvers

Many applications:
* Software verification
e Automated theorem proving
* Symbolic execution
e Security analysis

In this talk:
 How SMT Solvers (CVC4) handle string constraints

The CVC4 SMT Solver

Support for many theories and features
* UF, (non)linear arithmetic, arrays
* Bit-vectors, floating point
* Finite sets and relations, (co)datatypes
—> Strings and regular expressions

Co-developed at Stanford and University of lowa
* Project Leaders:
Clark Barrett and Cesare Tinelli

 String solver developers:
Andrew Reynolds, Tianyi Liang, Nestan Tsiskaridze, Andres Noetzli

Overview

* How SMT string solvers work:

 Basic architecture (DPLL(T))
* Core Theory Solver for Word Equations with Length Constraints

* Advanced Features
* Finite model finding
* Context-dependent simplification for extended string constraints
* Regular expression elimination

SMT solvers

Efficient tools for satisfiability modulo theories

Verification Conditions, Path Constraints, etc.

SMT Solver

Datatypes solver
Arithmetic solver

ol
! String solver
SAT Solver Nelson-Oppen g

Array solver

Bit-vector solver

SMT solvers

Efficient tools for satisfiability modulo theories

(A[x] +B[x]>0vx+y>0)A(cons(“abc”, dy) #d, vx<O0)

|

SMT Solver

v
’ String solver
SAT Solver Nelson-Oppen g

Bit-vector solver

SMT solvers

Efficient tools for satisfiability modulo theories

(A[x] +B[x]>0vx+y>0)A(cons(“abc”, dy) #d, vx<O0)

|

SMT Solver

% Arithmetic solver
P
tring solver
SAT Solver Nelson-Oppen ing solv

(modulo theories) (modulo theories)
Bit-vector solver

SMT solvers

Our focus: the theory of strings and linear arithmetic T¢ 5

x="ab"z A [X]| + |y| £5 A (“abcd”-x =y Vv |x| > 5)

|

SMT Solver

Datatypes solver

% Arithmetic solver
opu,
t |
SAT Solver Nelson-Oppen ring solver

(modulo Tg;) Array solver (modulo Tgya)

Bit-vector solver

Theory of Strings + Linear Arithmetic (Tg)

Sorts:
* Integers Int
e Strings String, interpreted as A* for finite alphabet A

Terms:
* String Variables: x,y,z
* Integer Variables: |, j, k
* String Constants: “”, “abc”, "AAAAA”, “http”
* String Concatenation: x-“abc”, x-y-z-w
 String Length: |x|

Formulas are:

e Equalities and disequalities between string terms
* Linear arithmetic constraints: |x| + 4 > |y|

Example: x-“a" =y, y#"b"z |y| > x| + 2

Decidability: unknown, regardless, many problems can be solved efficiently in practice

Te a String Solver for DPLL(T)

Achieved as a Cooperation between:

SAT Arithmetic

Solver Solver

String
Solver

10

Te a String Solver for DPLL(T)

x = "“ab”-z
IX| + |y] <5 — Set of T ,-formulas in clausal normal form (CNF)
“abcd”x=y Vv |x|>5

—

SAT

Arithmetic String

Solver Solver

Solver

Te a String Solver for DPLL(T)

X — llab".z
x| + Iyl =5
“abcd”x=y Vv |x|>5

SAT
Solver

Arithmetic String

Solver Solver

— Either determines no satisfying assignments for input exist

12

Te a String Solver for DPLL(T)

e

SAT Arithmetic

Solver Solver

=> ... or returns a propositionally satisfying assignment

String

Solver

13

Te a String Solver for DPLL(T)

SAT ‘ Aiithmetic

String
Solver

Solver Solver

= Constraints distributed to arithmetic and string solvers

14

Te a String Solver for DPLL(T)

X — llab".z
x| + Iyl =5
“abcd”x=y Vv |x|>5

SAT

Arithmetic String

Solver Solver

Solver

—> Either find constraints are T ,-satisfiable

Te a String Solver for DPLL(T)

X="ab”Z | e -
x| + Iyl =5
“abcd”x=y Vv |x|>5
—(x="ab”z) v |x| = |z| + 2

Arithmetic String
Solver Solver

~(x="“ab’2) v |x| = |z| + 2

= or return theory lemmas (valid T ,/Ts-formulas) to SAT solver

Te a String Solver for DPLL(T)

Arithmetic String
Solver Solver

—> and repeat

Inside a DPLL(T) Theory Solver

X = “ab”-z
Given a set of T-literals M; | “aped”x =y

Should the solver send a theory lemma to the SAT solver?

°* N0 => return unknown, or
return a model (a satisfying assignment)

* yes => which lemma?

* In typical DPLL(T) theory solvers (e.g. LIA) theory lemmas < T-conflicts
—(L; A ... A L,) for some T-unsatisfiable {L, ..., L,} < M;
* In string solver, theory lemmas may introduce new literals

* Will describe a strategy for strings

Arithmetic Theory Solver Mus
Decision procedure: 2%x| + |y| < 5
T-conflicts based on a standard procedure, e.g. Simplex x| - |z| > 2

A

G T-Conflict
to the SAT solver

Properties:
 Sound, lemmas it generates are LIA-valid
* Model-sound, “SAT” can be trusted

* Terminating, in the context of DPLL(T)
Only generates finitely many lemmas
. Complete

String Theory Solver |

* Sound, lemmas it generates are T.-valid
e Model-sound, “SAT” can be trusted

 Non-terminating, in the context of DPLL(T)
* May generate infinitely many lemmas

Cardinality

Inference strategy: X = “ab”-z
1. Process length constraints “abcd”x =y
2. Check for equality conflicts (congruence closure) —— —
3. Normalize string equalities I
4. Normalize string disequalities :
5. Check cardinality constraints Cong Closure |
|
Normalize Eq :
R Lemmas * ,
Properties: to the SAT solver Normalize Deq
' |
|
|

String Solver , -

Cong Closure

Running example:

Normalize Eq

Normalize Deq

Cardinality

|

r———————————————

String Solver

Cong Closure

Running example:

Normalize Eq

Will focus on string solver
Normalize Deq

[Liang et al. CAV2014]

Cardinality

String Solver: Process Length

y=Xx
122 PR,
M — w=u-b
XV=VW
X'VF#EW

X = z-’aab”

|

String Solver: Process Length

X = z-"aab”
y=Xx
))))
M — w=u-b
XV=VW
XVFEW

—

* For each term of type string in M.:
returns a lemma giving the definition of its length:
|"b"| =1 |"aab”| = 3 |x-v| = [x]| + |V]|
|z-"aab”| = |z| + 3 lu-"b”| = [u| + 1 |lv-w| = |v| + |w]|
* For each variable of type string in M.:

returns an emptiness splitting lemma:
X:HHV|X|21 y:“"\/ly|21

|

String Solver: Process Length

e ——Sa

X = z-"aab”
Lemmas
y=xX

— nbn

MS — W = U-
XV=VW

XVFEW
Miia { |xX|=6

|

String Solver: Process Length

new propositional assignment

1\/ILIA —

adds new constraints in
arithmetic solver

—

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

|x| =6
|"b"| — 1
|"aab"| — 3
[x-v| = |x] + |v|
|z-"aab”| = |z| + 3

|lu-"b”| = |u] + 3
lv-w| = |v| + [w]
x| =1

|

String Solver: Congruer

ce Closure

X = z-’aab”
y=X
W = U’"b"
XV=VW
XVFEW

Cong Closure

|
|
|
|
‘_
|
|
|

|

String Solver: Congruence Closure
x = z-"aab”
y=X
M, w=u"b’
X'V=VW
X'VF+FW

~—

* Group terms by equivalence classes:

Cong Closure

|

* Group terms by equivalence classes:

String Solver: Congruence Closure F-——- - :
- X = z-"aab” : :

M, w=u"b’ | |

X'V =VW | | :

XVFW | |

I |

B !

I |

____i___J

@

(20
ST

return lemma corresponding to T.-conflict
XV, V-W if disequal terms in the same equivalence class

String Solver: Normalize Equality

DI PIOORECPECY

X = z-’aab”

y=xXx
W = U’"b"
X'V=VW
XVF+FW

.

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality r

& QD D xSy

y=xX
W = U’"b"
XV=VW
XVF+FW

 Compute normal forms for equivalence classes

* A normal form is a concatenation of string terms r-....,
where each ri; is the representative of its equivalence class
Restriction: string constants must be chosen as representatives

* An equivalence class can be assigned a normal form r-....r, if:

Each non-variable term in it can be expanded (modulo equality and rewriting) tor;-...-

Normalize Eq

|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality

Co) (D () X = z"aab”

y=xX
W = U’"b"
X'V=VW
XVF+FW

Normal forms computed by a bottom-up procedure

.

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality Fm-----

|
X = z-"aab” | |
y =X :
w =u-"b" |
J Normalize Eq
X'V=VW : —
X'V FEW |
| !
|
Normal forms computed by a bottom-up procedure - ----

* First, compute containment relation induced by concatenation terms

* To compute a n.f. for eg-class of x-v, we must first compute a n.f. for eg-class of x and v
* This relation is guaranteed to be acyclic due to length elaboration step (cycle = LIA-conflict)

|

String Solver: Normalize Equality Fm-----

|

X = z-"aab” | |
y =X :
w =u-"b" |

@ Normalize Eq

X'V=VW :
X'V FEW |

| !
|

Normal forms computed by a bottom-up procedure - ----

* First, compute containment relation induced by concatenation terms

* To compute a n.f. for eg-class of x-v, we must first compute a n.f. for eg-class of x and v
* This relation is guaranteed to be acyclic due to length processing step (cycle = LIA-conflict)

e Base case: eqc containing only variables can be assigned representative as a normal form

* Inductive case: compare the expanded form t,,...,t, of each non-variable term t
* Ift; =...=t, assign to t. If there exists distinct t;, t;, then propagate or split

|

String Solver: Normalize Equality

X = z-’aab”
y=X
W = U’"b"
XV=VW
XVFEW

Single non-variable string term = assign

v

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

Single non-variable string term = assign

v

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality

y=X
W = U’"b"
X'V=VW
X'VF*FW

X = z-’aab”

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

|

String Solver: Normalize Equality

y=X
W = U’"b"
X'V=VW
X'VF*FW

X = z-’aab”

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

|

String Solver: Normalize Equality

y=X
W = U’"b"
X'V=VW
X'VF*FW

X = z-’aab”

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

|

String Solver: Normalize Equality F------

|
x = z-"aab” | [
y =X |
W — U’"b" I
XV = VW @ Normalize Eq
- |
XVFW I
| |
|
|
[— _l_ -—

Equivalence class with two non-variable terms with distinct expanded forms:
e x'v=(z"aab”)-v = z-"aab”-v
e vw=v-(u-’b”) = v-u’b”

|

String Solver: Normalize Equality

Z'"aab"'V = vV-u ’"b"

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

|

String Solver: Normalize Equality F------

|
x = z-"aab” l [
— |
y=X |
W — U’"b" I
@ Normalize Eq
X'V=VW ,
X'VFW |
| |
|
|
-————|——-
= == Em oEm Em Em Em Em Em Em = e | ?
: ______ Z_ _____-! llaab" V —

: \ ¥4 : u ubn

|

String Solver: Normalize Equality

Z

Z-“aab"-V =? V°u ."b"

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

* Consider three cases for making these two terms equal:

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

Z

llaab"

1 When [z]| = |v|

llb"

|

String Solver: Normalize Equality

Z

Z-“aab"-V =? V°u ."b"

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

* Consider three cases for making these two terms equal:

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

Z llaab"

yA \V4 When |z| < |v|

llb"

|

String Solver: Normalize Equality

Z

?

Z'"aab"'V = vV-u ’"b"

X = z-’aab”
y=X
W = U’"b"
X'V=V'W
X'VF*FW

* Consider three cases for making these two terms equal:

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

llaab"

When |z| > |v|

u

llb"

|

String Solver: Normalize Equality

.

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|
X = z-’aab” |
— |
y =X |
W — U’"b" I
XV = V-W :
X'VFEW |
Z=1V :
. |
 Consider:
Z “aab” \V
1
V u llb"

|

String Solver: Normalize Equality

X = z-’aab”

CRIETPICORED y=x

)_(’ }I, Z'"aab"
+ XV=VW
Z =V

Recompute congruence closure

.

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality

x = z-"aab”
y =X
w =u-"b”
X'V=VW
X'VFEW
Z=V

Recompute congruence closure and normal forms

Fm————

.

Normalize Eq

.

|
|
|
|
‘_
|
|
|

|

String Solver: Normalize Equality

x = z-"aab”
y =X
w=1u-"b"
XV=VW
XVF+FW
Z=V

Recompute congruence closure and normal forms

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

|

String Solver: Normalize Equality

V.llaab".v ; V°u ."b"

x = z-"aab”
y =X
w=1u-"b"
XV=VW
XVF+FW
Z=V

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

llaab"

I~

llb"

|

String Solver: Normalize Equality

x = z-"aab”
y =X
w=1u-"b"
XV=VW
XVF+FW
Z=V

v

Normalize Eq

.

|
|
|
|
4_
|
|
|

\"

llb"

|

Splitting on String Equalities

Choosing how to process equalities is
highly non-trivial and critical to performance:

* Prefer propagations over splits
Infer xw =y-w—=x=y before xw=zv=(x=zx vz=x7)

e Can consider both the prefix and suffix of strings
Inferw-x =w-y =>x=y

* Use length entailment [Zheng et al 2015]
If |x| > |y| is entailed by the arith. solver, then xw =y-v A [X| > |z| > x=yX

Splitting on String Equalities

Choosing how to process equalities is
highly non-trivial and critical to performance:

* Propagation based on adjacent constants

))

x-"b" ="aab”-y = x = "aa”-x’, since “b” cannot overlap with prefix “aa”

* Special treatment for looping word equations [Liang et al 2014]
* splitting leads to non-termination; reduce to RE membership instead
° e.g. X'“ba" — “ab"'X : X E ((lab)))*.ﬂaﬂ

* Deduced string equalities are not sent as unit lemmas
instead they are maintained internally

String Solver: Normalize Disequalities

modified example —

X = z- ’aab”
y=X

W = U’"b"

X'VFVW

v

Normalize Deq

|
|
|
|
‘_
|
|
|
|

String Solver: Normalize Disequalities r------ :

)

X = z-"aab
y=xXx

W = U'"b"

X'VFVW

v

Normalize Deq

|
|
|
|
‘_
|
|
|
|

Disequalities are handled analogously to equalities
o If |[x-v| # |v-w]|, then trivially x-v # v-w
e Otherwise, consider the normal forms of x-v and v-w from previous step

String Solver: Normalize Disequall

CD Caw > G CvD (W)

X, y, z- aab” @

X = z- ’aab”

y=X
W = U'"b"
X'VFVW

Disequalities are handled analogously to equalities

v

Normalize Deq

|
|
|
|
‘_
|
|
|
|

String Solver: Normalize Disequalities

)

X = z-"aab
y=xXx

W = U’"b"

X'V FVW

Normalize Deq

|
|
|
|
4_
|
|
|
|

~J

N

u

llb"

String Solver: Normalize Disequa

Ities

X=17z"aa
y=X

)

W — u."b"
X'VFEVW

VFZ

Disequalities are handled analogously to equalities

Normalize Deq

|
|
|
|
4_
|
|
|
|

Z

llaab"

N

z| = |v|and z# Vv

\Y

u

llb"

String Solver: Cardinality

X = z- ’aab”

y=X
W = U’"b"
X'VFVW
V * 7Z

Cardinality

L___________

String Solver: Cardinality AR ——

« M may be unsatisfiable since alphabet A is finite
e For instance,if: T
* Ais a finite alphabet of 256 characters, and

* M; entails the existence of 257 distinct strings of length 1
— Then Mg is unsatisfiable

|
X = z- aab” | |

_ |

y — X |
w=u-"b" | '
X'V # V'W | !

VF#Z |

|

|

|

C. (distinct(sy, .., Sys7) A Sy = oo = [S957|) = |s¢] > 1

L___________

String Solver: Return SAT R —— :

|
|

X = z-"aab” | ! :

y=x : |

w =u-"b” | ' :

X'V # VW : ! |

V#Z | |

: |

| ¢ :

: |

R — —i— — o o

If all steps finish with no new lemmas:
1. M, is T,-satisfiable

2. Model can be computed based on normal forms
» String constants assigned to eq classes whose normal form is a variable
Length fixed by model from arithmetic solver
* Each variable interpreted as the valuation of the normal form of their eq class

String Solver: Return SAT R —— :

|
|

X = z-"aab” | ! :

y=x : |

w = u-"b” | ' :

X'V # VW : ! |

V # Z | :

: |

| ¢ :

: |

N — _l_ N |

If all steps finish with no new lemmas:
1. M, is T,-satisfiable

2. Model can be computed based on normal forms
» String constants assigned to eq classes whose normal form is a variable
* Length fixed by model from arithmetic solver
* Each variable interpreted as the valuation of the normal form of their eq class

String Solver: Return SAT R —— :

lul =3

7] =1 +— v =1

I
X = z-"aab” : [l
Haab" “b" 1] . I I
— X : :
W U’"b" I ; |
I
X'V % V-W | ¢ :
V A\Z | :

I
| : !
I I

model

String Solver: Return SAT R —— :

|Z|:1 |V|=1 |u|=3

|

|
X = z- aab” | [:
y=x : |
W = U’"b" I ; :
X'V # V'W | | :
VF+Z I I
I |
| : |
I |

Example:
» 7z assigned to “c”

String Solver Return SAT

{4 " o

aab” |
o " (“ |

XV aab” -

X = z- ’aab”
y=X

W = U’"b"

X'VFEVW
VF*Z

Example:
» 7z assigned to “c”
* v assigned to “d”

String Solver: Return SAT R —— :

|
lu| =3 '
EEEm
I
y=X |
W = U’"b" : v |
“C"’“aab" I I
X'V F#FVW : ! I
o) » »An ' « 1n »1» V ;t Z I I
x-v: “c”’-“aab” -"d d”- b : I
v |
|
| ! J'

Example:
» 7z assigned to “c”
* v assigned to “d”
* uassigned to “aaa”

Cardinality step ensures enough enough constants exist

String Solver: Return SAT R —— :

|
|
X = z-"aab” | [:
—_ |
y — X I I
W = U’"b" , il I
“C"’“aab" “aaa"'“b" I :
X'VFVW : i ,
o »non3n «_Jn » » oIL» V i Z |
x-v: “c”’-“aab” -"d I d”-"aaa”-"b : :
| ¢ |
I |

____l___J

Example:
» 7z assigned to “c”
* v assigned to “d”
* uassigned to “aaa”

* Variables assigned to value of the normal form of their eq classes:
* X,y assigned to “caab”, w assigned to “aaab”

String Solver: Return SAT R —— :

|
|
X = z-"aab” | [:
—_ |
y — X I I
W = U’"b" , il I
“C"’“aab" “aaa"'“b" I :
X'VFVW : i ,
W »non3n «_Jn » » oIL» V i Z |
x-v: “c”’-“aab” -"d I d”-"aaa”-"b : :
| ¢ |
I |

____l___J

Example:
» 7z assigned to “c”
* v assigned to “d”
* uassigned to “aaa”

* Variables assigned to value of the normal form of their eq classes:
* X,y assigned to “caab”, w assigned to “aaab”

Saturation criteria of procedure ensures this model satisfies M

Advanced Topics

* Finite model finding for strings
* Context-dependent simplification for extended string constraints
* Regular expression elimination

Finite Model Finding for Strings

Finite Model Finding for Strings

Idea: Incrementally bound the lengths of input string variables x, ...

= Improved solver’s ability to answer “SAT” for problems with small models

Search for models Zi=1.n|Xi[<0 —2iq 21X <0

where sum of
lengths is O

Zi=1...n|Xi| <1 — zizl___nlxil <1

Search for models
where sum of

— 2 X | <2
lengths is 1 =10 | Xi] =

Zisy.nlXi| =2

etc.

Finite Model Finding

* Minimize sum of lengths >._, . |x| <0
* Which variables have unbounded length?

X = “ab”-z
X =y-u-vvu=# “abc”
w =x-"ab” vw =y-"cde”

Finite Model Finding

* Minimize sum of lengths >._, . [x/|<0
* Which variables have unbounded length?

X — l(ab".z
X =y-u-vvu# “abc”
w =x-"ab” vw =y-"cde”

e Can include a subset of the overall input variables in this sum
Above, upper bound on |x + u| implies upper bounds on the length of z, y, w, v

* Reduces the overall sum of lengths

Context-Dependent Simplification
for Extended String Constraints

Extended String Constraints

* Basic terms
e String and integer variables, constants, concatenation, length, and LIA-terms

* Extended string terms:
* Substring: substr(x, 1, 3)
(the substring of x starting at pos. 1 of length at most 3)

* String contains: contains(x, "abc”)
(true iff x contains the substring “abc”)

* Find “index of”: indexof(x, "d”, 5)

(the pos. of the first occurrence of “d” in x, starting from position 5, or -1 if it does not exist)
* String replace: replace(x, “a”, “b”)

(the result of replacing the first occurrence of “a” in x, if any, with “b”)

Example: —contains(substr(x, 0, 3), “a”) A 0 <indexof(x, “ab”’, 0) < 4

Processing Extended String Constraints

—contains(x, “a”)

Processing Extended String Constraints

* Naively, by reduction to basic constraints + bounded V

—contains(x, “a”)

Processing Extended String Constraints

* Naively, by reduction to basic constraints + bounded V

—contains(x, “a”)

V0 <n < [x|. substr(x, n, 1) # “a” Expand contains

Processing Extended String Constraints

* Naively, by reduction to basic constraints + bounded V

—contains(x, “a”)

V0 <n < [x|. substr(x, n, 1) # “a” Expand contains

substr(x, 0, 1) # “a” A ... A substr(x, 4, 1) # “a” Assuming bound |x| <5

Processing Extended String Constraints

* Naively, by reduction to basic constraints + bounded V

—contains(x, “a”)

4

V0 <n < [x|. substr(x,n, 1) # “a”

«o_)

substr(x, 0, 1) # “a” A ... Asubstr(x, 4, 1) # “a

X = le'kI.ZZ]. VAN X = Z14'k4'Z24 VAN
|Z11] =0 A |Z14] =4 A
kl ¢ l(a’, /\ k4 ¢ ‘(a,’

Expand contains

Assuming bound |x| <5

Expand substr

Processing Extended String Constraints

* Naively, by reduction to basic constraints + bounded V

—contains(x, “a”)

4

V0 <n < [x|. substr(x, n, 1) # “a” Expand contains

«o_)

substr(x, 0, 1) # “a” A ... Asubstr(x, 4, 1) # “a Assuming bound |x| <5

v
X = Z11°K1Z31 A X = Z14'KyZp4 A
|Zz11] =0 A |Z14| = 4 A Expand substr
kl ¢ lla" A 1(4-¢ uan

e Approach used by many current solvers
[Bjorner et al. 2009, Zheng et al. 2013, Li et al. 2013, Trinh et al. 2014]

81

(Eager) Expansion of Extended Constraints

—contains(x,‘a”)
X — y.lld"
y=“ab"vy=llacn

Arithmetic

Solver

(Eager) Expansion of Extended Constraints

—contains(x,‘a”)

X — y.lld"
y — “ab" v y — llaC"

X =Z11-KyZp X = Z14°KyZpy
|z141] =0 |Z14| = 4
kl i“ a" k4 ¢lla"

X — y.lld"

y= “ab”\/y: llaC"

SAT

Solver

Arithmetic

Solver

Expand and eliminate extended symbols

83

(Eager) Expansion of Extended Constraints

—contains(x,‘a”)

X — y.lld"
y — “ab" v y — llaC"

X =Z11-KyZp X = Z14°KyZpy
|z141] =0 |Z14| = 4
kl i“ a" k4 ¢lla"

X — y.lld"

y= “ab”\/y: llaC"

e uns 3

Expand and eliminate extended symbols

Arithmetic

Solver

84

X =Z11-KyZp X = Z14°KyZpy
|z141] =0 |Z14| = 4
kl i“ a" k4 ¢lla"

X — y.lld"

(Eager) Expansion of Extended Constraints

—contains(x,‘a”)
X — y.lld"
y=“ab"vy=llacﬂ

y= “ab”\/y: llaC"

_ Must deal with a large constraint set

85

(Eager) Expansion of Extended Constraints

|
—contains(x,‘a”)

x =y-“d’ I ..what if we simplify the input?
I y=“ab"vy=llaC" I

| _-———— - I

Arithmetic

Solver

e uns 3

SMT Solvers + Simplification

All SMT solvers implement simplification techniques

—contains(x, “a”)
X — y.lld"
y=llab"vy=llaC"

(also called normalization or rewrite rules)

87

SMT Solvers + Simplification

All SMT solvers implement simplification techniques

—contains(x, “a”)
X — y.lld"
y=l(ab"vy=llaC"

—contains(y-“d”, “a”)
y — llab" vy — llaC"

(also called normalization or rewrite rules)

since x = y-"d”

88

SMT Solvers + Simplification

All SMT solvers implement simplification techniques

—contains(x, “a”)
X — y.lld"
y=l(ab"vy=llacn

—contains(y-“d"“a”)A
Y=llab" v y:llaC"

4

—contains(y,‘a”)A
Y=llab" v y:llaC"

(also called normalization or rewrite rules)

since x = y-"d”

since contains(y-“d”, "a”) <> contains(y, “a”)

89

SMT Solvers + Simplification

All SMT solvers implement simplification techniques
(also called normalization or rewrite rules)

—contains(x, “a”)
X — y.lld"
y=llab"vy=llaC"

—contains(y-“d"“a”)A

« » “«_. . » since X = Y’"d"
y="ab” v y="ac

4

—contains(y,‘a”)A
Y=llab" v y=llaC"

since contains(y-“d”, "a”) < contains(y,“a”)

Leads to smaller inputs
Some problems can be solved by simplification alone

90

(Lazy) Expansion + Simplification

—contains(x, “a”)
X — y.lld"
y — llab" vy — MaC"

SAT Arithmetic

String

Solver

Solver Solver

(Lazy) Expansion + Simplification

—contains(x, “a”)
X — y.lld"
y — llab" vy — MaC"

—contains(y, “a”) Simplify the input

y= “ab”\/y: MaC"

Arithmetic

String

Solver

Solver

(Lazy) Expansion + Simplification

Arithmetic
Solver

String

Solver

93

(Lazy) Expansion + Simplification

—contains(y, “a”)
y — llab" vy — MaC"

Arithmetic String
Solver Solver
v = z11ky 71 A Y = Z14° Ky Zog A
contains(y, "a”) < |z11] =0 A |Z14| =4 A

kl ¢ Ha" /\ 1{4¢ Haﬂ)

(Lazy) Expansion + Simplification

—contains(y, “a”)
y — llab" vy — MaC"

Arithmetic String
Solver Solver

:- _ o v = z11ky 71 A Y = Z14KaZps A
Still have a large constraint contains(y, "a”) < 1Z11| =0 A |Z14l = 4 A

| ky#“a” A ky# “a”)

s - - - - - S S S S D S D DS D D D B D B B B B B e B e .

(Lazy) Expansion + Simplification

What if we simplify based
on the context?

Arithmetic String
Solver Solver
(y = 211K Zo1 A Y = Z14KgZo4 A
contains(y, "a”) < |z11] =0 A |Z14] =4 A

k1 i Ha" /\ k4¢ NaH)

96

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)

— - — = -

Arithmetic String
Solver Solver

Since contains(y, "a”) is true when y = “ab” ...

97

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)
y — llab" vy — “aC"

— = ContainS(y, "a") -

SAT Arithmetic String

Solver Solver Solver

y= “ab” = contains(y, "a”)

98

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)
y — llab" vy — “aC"

— — ContainS(y’ "a") -

Arithmetic String
Solver Solver

99

(Lazy) Expansion + Context-Dependent Simplification

y= llab"v.

—y = “ab” v contains(y, "a")

Arithmetic String

Solver Solver

100

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)
y — llab" vy — “aC"
—y = “ab” v contains(y, "a”)

Arithmetic String

Solver Solver

contains(y, "a”) is also true when y = “ac” ...

101

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)
y = “ab” vy ="“ac”
—y = “ab” v contains(y, "a”)
—y = “ac” v contains(y, "a”)

Arithmetic String
Solver Solver

y = “ac” = contains(y, "a”)

102

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)
y — Mab" vy — llaC"

—y = “ab” v contains(y, "a”)
—y = “ac” v contains(y, "a”)

Arithmetic String
Solver Solver

0=

103

(Lazy) Expansion + Context-Dependent Simplification

—contains(y, “a”)

_y="ab’vy="ac’ Did not need to fully

r | . n_n B . !
I Ty = G v contains(y, "T) I expand contains
| —y = “ac” v contains(y, "a") |

Arithmetic String

Solver Solver

context-dependent simplification
[Reynolds et al CAV 2017] o

Results on Symbolic Execution [reynolds et al. cav 17]

60000

+ + z3str2
50000 --. 23

— cvc4

¢ ¢ cvcd+s
» » CvCc4+fs

+
+
+
+
+
+
+
+
+
+
+
+
30000¢} e /
+
+
s
&
+
F
F

40000t

20000¢f

10000

Cumulative Runtime (s

% ~T5000 10000 15000 20000 25000

Number of Problems Solved

* cvcd+fs (finite model finding + context-dependent simpl.) solves 23,802 benchmarks in 5h8m
* Without finite model finding, solves 23,266 benchmarks in 8h46m
* Without either finite model finding or cd-simplification, solves 22,607 benchmarks in 6h38m

Many Simplification Rules for Strings

Unlike arithmetic:

X+x+7*y=y-4

2%X + 6%y + 4 = 0

... simplification rules for strings are highly non-trivial:

substr(x- “abcd”, 1 + len(x),2) » “bc”
contains(“abcde”, “b”- x- “@”) -— "L
contains(x-“ac”-y, “b”) [» contains(x, “b”) v contains(y, “b”)

indexof(“abc”-x, “a”

X)) »

-1

replace(“a”-x, “b"y)

con(“a”, replace(x, “b” y))

Simplification based on High-Level Abstractions

Rules based on high-level abstractions
 When viewing strings as #characters (e.g. reasoning about their length):

contains(substr(x, i, j), x-"a”) |

[Reynolds et al. CAV 19]

n»

since the second argument is
longer than the first

* When considering the containment relationship between strings:

contains(replace(x,y,z),z) |~

contains(x, y) v contains(x, z)

* When viewing strings as multisets of characters:

X-x'y-"ab” = x-"bbbbbb”-y

1

since LHS contains at least 1 more
occurrences of “a”

Impact of Aggressive Simplification

Set all -arith -contain -msets Z3 OSTRICH [Reyn0|d5 et al- CAV 19]
sat 7947 7746 7948 7946 4585
CMU unsat 66 31 66 66 52
x 173 409 172 174 3549
sat 10 10 10 10 1
TERMEQ unsat 49 36 27 49 36
% 22 35 44 22 44] . o o
-arith: w/o arithmetic simplifications
sat 1302 1302 1302 1302 1100 1289) . . e
SLOG unsat 2082 2082 2082 2082 2075 2082 -contain: w/o contain-based simplifications
X 7 7 7 7 216 20 -mset: w/o multiset-based simplifications
sat 132 132 132 132 10
APLAS unsat 292 291 171 171 94
x 159 160 280 280 479
sat. 9391 9190 9392 9390 5696 1289
Total unsat 2489 2440 2346 2368 2257 2082
x 361 611 503 483 4288 8870

CVC4 implements >3000 lines of C++ for simplification rules (and growing)
Important aspect of modern string solving

Regular Expression Elimination

Regular Expression Elimination

CVC4 supports regular expressions, via:

* Decomposing memberships
Eg. xe RiUR; = xeR;jvxeR, xeRiNMR;, = xe R AxeR,

* Intersection (modulo equality):
E.g. (x e RiAy € R AX=y) = xe compute_intersection(R; R;)

e Unfolding
Eg. xe R"=x=

122

VvV (X =Xx1X, AX; € RAX, e R*) for fresh x4, X,

* Elimination based on reduction to extended string constraints

Regular Expression Elimination

Idea: reduce RE to extended string constraints
Possible for many regular expression memberships that occur in practice:

xeA A*A| & [x[=z2

x € A*"abc”- A* <~ contains(x, "abc”)

k A7, % » ”. sk contains(x, "a") A
x € A™"a" A*"bed” A — contains(substr(x, indexof(x, "a”, 1) + 1, |x|), "bcd”)

CVC4 supports (aggressive) elimination techniques for RE like those above
Utilizes existing support for extended functions

M

S

String Theory Solver (Extended) e

Input
* Preprocess based on reg-exp elimination E———

* Then, run inference strategy:

1. Split on sum of lengths bound (FMF)
Process length constraints Cong Closure
Check for equality conflicts (congruence closure) T

Context-dependent simplification for extended functions Normalize Eq
Normalize string equalities b

: : : cps N Lemmas Normalize Deq
Normalize string disequalities i, the SAT solver F
Check cardinality constraints Eae A

Reduce extended functions Reduce EXTF

O N UhRWN

|
I
|
L

Conclusions

* CVC4 supports DPLL(T) theory solver for strings and regular
expressions
 Efficient in practice (incomplete) procedure for word equations with length

* More advanced features like FMF, context-dependent simplification, RE
elimination

* Also supports: str.code, str.<=, str.to-int, str.from-int, str.replaceall

* Open-source, available at https://cvc4.github.io/

Thanks for listening

https://cvc4.github.io/

