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What do I mean by Constraint Programming(CP)

Apparently we all do constraint solving, but what I mean :-
Finite Domains
Intelligent backtracking by assigning domains and
propagating the consequences (although there is recent
work incorporates clause learning).

CP has been around since the 70s, took off in the 90s with
practical and scalable systems: IBM CP Optimiser, Gecode,
Chuffed, Google-OR tools plus the MiniZinc1 tool chain.

1https://www.minizinc.org/
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Constraint Programming in a Nutshell

Slogan of CP
Constraint Program = Model [ + Search ]

CP provides:
high level declarative modelling abstractions,
a framework to separate search from from modelling.

We often spend a lot of time thinking about search procedures.
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Example (Sudoku model)
1 array[1..9,1..9] of var 1..9: Sudoku;

2 ...

3 solve satisfy;

4 forall(r in 1..9)

5 (ALLDIFFERENT([Sudoku[r,c] | c in 1..9]));

6 forall(c in 1..9)

7 (ALLDIFFERENT([Sudoku[r,c] | r in 1..9]));

8 forall(i,j in {1,4,7})

9 (ALLDIFFERENT([Sudoku[r,c] | r in i..i+2, c in j..j+2]));
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Global Constraints

Global constraints such as ALLDIFFERENT and SUM enable the
preservation of combinatorial sub-structures of a constraint
problem, both while modelling it and while solving it. Many
n-ary constraints (Catalogue) have been identified and
encapsulate complex propagation algorithms declaratively.,
including

n-ary linear and non-linear arithmetic
Rostering under balancing & coverage constraints
Scheduling under resource & precedence constraints
Geometrical constraints between points, segments, . . .

There are many more.
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CP Solving = Search + Propagation

A CP solver conducts search interleaved with propagation:

Familiar idea as in SAT solvers.
Propagate until fix point.
Make a choice.
Backtrack on failure.

Because we have global constraints we can often do more
propagation than unit-propagation of clauses at each step.
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The ALLDIFFERENT constraint

Consider the n-ary constraint ALLDIFFERENT, with n = 4:

ALLDIFFERENT([a,b, c,d ]) (1)

Modelling: (1) is equivalent to n(n−1)
2 binary constraints:

a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d (2)

Inference: (1) propagates much better than (2). Example:

a ∈ {4, 5}, b ∈ {4, 5}, c ∈ {3, 4}, d ∈ {1, 2, 3, 4, 5}

No domain pruning by (2).

But perfect propagation by (1)
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Bounded-length Strings in CP
bounded-length sequence representation

A b-length sequence over-approximates a set of strings of
length ≤ b.

〈〈A[1], . . . ,A[b]〉,N〉

Each A[i] is a set of characters, which can become empty and
N in interval giving the lower and upper bound of the string
length.
That the implementation comes with some invariants relating
the length and the non-emptyness of sets. With a clever
implementation you can generate the sets A[i] on the fly.
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Bounded-length Strings

A bounded length is a string of a (possibly)-unknown that is
bounded from above by some implementation specific constant.
Possible implementations

Decompose are arrays of characters with a length variable
and a padding character (padded).
Implement special propagators to work with the padding
approach approach (aggregate)
Implement a bespoke variable type inside a constraint
solver (native).

We need padding characters because when a domain
becomes empty a CP solver will fail at that node and backtrack.
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New data-types in CP

Implement a new datatype as a first class citizen in the
constraint solver. A classic example is set variables.

Choice of representation.
How to interact with the propagation loop

Changes in domains are signalled by events that form a
lattice.
A propagator subscribes to events to control how much
information and how often the propagator is woken up.

What exactly should we propagate?
A representation is an approximation of the mathematical
reality.
We have a galois-based framework for specifying
propagators and deriving what propagation should and can
be done in different representations.
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String Constraints
Some of the constraints that we have considered, sj are string
variables, cj are character variables and ij are integer variables.

EQUAL(s1, s2) if s1 and s2 are equal, that is s1 = s2

REVERSE(s1, s2) if s1 = c1c2 · · · cn and s2 = cn · · · c2c1

CONCAT(s1, s2, s) if s1 ⊕ s2 = s, with concatenation ⊕
SUBSTRING(s1, i1, i2, s) if s1[i1 : i2] = s
CHARACTERAT(s, i , c) if SUBSTRING(s, i , i , “c ”)
LENGTH(s, i ) if s has i characters, that is |s| = i
REGULAR(s,R) if s is a word of a regular language R,
given by a regular expression or a finite automaton
CONTEXTFREE(s,F) if s is a word of a context-free
language F , given by a context-free grammar
COUNT(s, [c1, ..., cn], [i1, ..., in]) if in s all cj occur ij times
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Constraints and Decision Variables

Instead of communicating theories we communicate via
propagation.

LENGTH(s, l) ∧ l + m = c
Propagation on l ,m,c will propagate information to the length of
s as well as the other direction.
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Native Strings

Three tightly related choices:

data structure
candidate lengths ⊂ N: range sequence, bitset, interval
candidate characters ⊂ N: range sequence, bitset, interval
sequence: array, list, list of arrays, etc

restriction operations must consider undefinedness
work by removing values from components
result is to remove strings from the domain

propagation events
representation invariant: many promising looking event
systems are not monotonic
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Another Approach — Dashed Strings

A dashed string (D.S.) is a concatenation
Sl1,u1

1 Sl2,u2
2 · · ·Slk ,uk

k of blocks Sli ,ui
i such that:

0 < k ≤ b Si ⊆ Σ 0 ≤ li ≤ ui ≤ b Σk
i=1li ≤ b

Each block Sli ,ui
i represents the set of strings of S∗

i having
length in [li ,ui ].
Graphical interpretation: continuous segments of length li
are the mandatory part (characters that must appear),
dashed segments of length ui − li are the optional part
(characters that may appear)

e.g., graphical representation of D.S.
{B,b}1,1{o}2,4{m}1,1{!}0,3

B, b o o o o m ! ! !
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Conclusions

Lots of experiments, we are competitive. Implementations
exists, but they are not exactly off the shelf at the moment.
Dashed strings often work better as more information can
be propagated about the length, but this makes the
propagators more complicated.
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Thank you

Questions?
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