
Strings in Constraint Programming

Justin Pearson

Uppsala University

May 2019

Joint (and non-joint) work with Pierre Flener, Joseph Scott, Jun
He, Peter Stucky and Roberto Amadini

What do I mean by Constraint Programming(CP)

Apparently we all do constraint solving, but what I mean :-
Finite Domains
Intelligent backtracking by assigning domains and
propagating the consequences (although there is recent
work incorporates clause learning).

CP has been around since the 70s, took off in the 90s with
practical and scalable systems: IBM CP Optimiser, Gecode,
Chuffed, Google-OR tools plus the MiniZinc1 tool chain.

1https://www.minizinc.org/

Uppsala University Justin Pearson Strings in Constraint Programming

https://www.minizinc.org/

Constraint Programming in a Nutshell

Slogan of CP
Constraint Program = Model [+ Search]

CP provides:
high level declarative modelling abstractions,
a framework to separate search from from modelling.

We often spend a lot of time thinking about search procedures.

Uppsala University Justin Pearson Strings in Constraint Programming

6 1 4 5
8 3 5 6

2 1
8 4 7 6

6 3
7 9 1 4
5 2

7 2 6 9
4 5 8 7

Example (Sudoku model)
1 array[1..9,1..9] of var 1..9: Sudoku;

2 ...

3 solve satisfy;

4 forall(r in 1..9)

5 (ALLDIFFERENT([Sudoku[r,c] | c in 1..9]));

6 forall(c in 1..9)

7 (ALLDIFFERENT([Sudoku[r,c] | r in 1..9]));

8 forall(i,j in {1,4,7})

9 (ALLDIFFERENT([Sudoku[r,c] | r in i..i+2, c in j..j+2]));

Uppsala University Justin Pearson Strings in Constraint Programming

Global Constraints

Global constraints such as ALLDIFFERENT and SUM enable the
preservation of combinatorial sub-structures of a constraint
problem, both while modelling it and while solving it. Many
n-ary constraints (Catalogue) have been identified and
encapsulate complex propagation algorithms declaratively.,
including

n-ary linear and non-linear arithmetic
Rostering under balancing & coverage constraints
Scheduling under resource & precedence constraints
Geometrical constraints between points, segments, . . .

There are many more.

Uppsala University Justin Pearson Strings in Constraint Programming

http://sofdem.github.io/gccat

CP Solving = Search + Propagation

A CP solver conducts search interleaved with propagation:

Familiar idea as in SAT solvers.
Propagate until fix point.
Make a choice.
Backtrack on failure.

Because we have global constraints we can often do more
propagation than unit-propagation of clauses at each step.

Uppsala University Justin Pearson Strings in Constraint Programming

The ALLDIFFERENT constraint

Consider the n-ary constraint ALLDIFFERENT, with n = 4:

ALLDIFFERENT([a,b, c,d]) (1)

Modelling: (1) is equivalent to n(n−1)
2 binary constraints:

a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d (2)

Inference: (1) propagates much better than (2). Example:

a ∈ {4, 5}, b ∈ {4, 5}, c ∈ {3, 4}, d ∈ {1, 2, 3, 4, 5}

No domain pruning by (2).

But perfect propagation by (1)

Uppsala University Justin Pearson Strings in Constraint Programming

The ALLDIFFERENT constraint

Consider the n-ary constraint ALLDIFFERENT, with n = 4:

ALLDIFFERENT([a,b, c,d]) (1)

Modelling: (1) is equivalent to n(n−1)
2 binary constraints:

a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d (2)

Inference: (1) propagates much better than (2). Example:

a ∈ {4, 5}, b ∈ {4, 5}, c ∈ {3, 4}, d ∈ {1, 2, 3, 4, 5}

No domain pruning by (2).

But perfect propagation by (1)

Uppsala University Justin Pearson Strings in Constraint Programming

The ALLDIFFERENT constraint

Consider the n-ary constraint ALLDIFFERENT, with n = 4:

ALLDIFFERENT([a,b, c,d]) (1)

Modelling: (1) is equivalent to n(n−1)
2 binary constraints:

a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d (2)

Inference: (1) propagates much better than (2). Example:

a ∈ {4, 5}, b ∈ {4, 5}, c ∈ {3, 4}, d ∈ {1, 2, 3, 4, 5}

No domain pruning by (2).

But perfect propagation by (1)

Uppsala University Justin Pearson Strings in Constraint Programming

The ALLDIFFERENT constraint

Consider the n-ary constraint ALLDIFFERENT, with n = 4:

ALLDIFFERENT([a,b, c,d]) (1)

Modelling: (1) is equivalent to n(n−1)
2 binary constraints:

a 6= b ∧ a 6= c ∧ a 6= d ∧ b 6= c ∧ b 6= d ∧ c 6= d (2)

Inference: (1) propagates much better than (2). Example:

a ∈ {4, 5}, b ∈ {4, 5}, c ∈ {3, 4}, d ∈ {1, 2, 3, 4, 5}

No domain pruning by (2). But perfect propagation by (1)

Uppsala University Justin Pearson Strings in Constraint Programming

Bounded-length Strings in CP
bounded-length sequence representation

A b-length sequence over-approximates a set of strings of
length ≤ b.

〈〈A[1], . . . ,A[b]〉,N〉

Each A[i] is a set of characters, which can become empty and
N in interval giving the lower and upper bound of the string
length.
That the implementation comes with some invariants relating
the length and the non-emptyness of sets. With a clever
implementation you can generate the sets A[i] on the fly.

Uppsala University Justin Pearson Strings in Constraint Programming

Bounded-length Strings

A bounded length is a string of a (possibly)-unknown that is
bounded from above by some implementation specific constant.
Possible implementations

Decompose are arrays of characters with a length variable
and a padding character (padded).
Implement special propagators to work with the padding
approach approach (aggregate)
Implement a bespoke variable type inside a constraint
solver (native).

We need padding characters because when a domain
becomes empty a CP solver will fail at that node and backtrack.

Uppsala University Justin Pearson Strings in Constraint Programming

New data-types in CP

Implement a new datatype as a first class citizen in the
constraint solver. A classic example is set variables.

Choice of representation.
How to interact with the propagation loop

Changes in domains are signalled by events that form a
lattice.
A propagator subscribes to events to control how much
information and how often the propagator is woken up.

What exactly should we propagate?
A representation is an approximation of the mathematical
reality.
We have a galois-based framework for specifying
propagators and deriving what propagation should and can
be done in different representations.

Uppsala University Justin Pearson Strings in Constraint Programming

String Constraints
Some of the constraints that we have considered, sj are string
variables, cj are character variables and ij are integer variables.

EQUAL(s1, s2) if s1 and s2 are equal, that is s1 = s2

REVERSE(s1, s2) if s1 = c1c2 · · · cn and s2 = cn · · · c2c1

CONCAT(s1, s2, s) if s1 ⊕ s2 = s, with concatenation ⊕
SUBSTRING(s1, i1, i2, s) if s1[i1 : i2] = s
CHARACTERAT(s, i , c) if SUBSTRING(s, i , i , “c ”)
LENGTH(s, i) if s has i characters, that is |s| = i
REGULAR(s,R) if s is a word of a regular language R,
given by a regular expression or a finite automaton
CONTEXTFREE(s,F) if s is a word of a context-free
language F , given by a context-free grammar
COUNT(s, [c1, ..., cn], [i1, ..., in]) if in s all cj occur ij times

Uppsala University Justin Pearson Strings in Constraint Programming

Constraints and Decision Variables

Instead of communicating theories we communicate via
propagation.

LENGTH(s, l) ∧ l + m = c
Propagation on l ,m,c will propagate information to the length of
s as well as the other direction.

Uppsala University Justin Pearson Strings in Constraint Programming

Native Strings

Three tightly related choices:

data structure
candidate lengths ⊂ N: range sequence, bitset, interval
candidate characters ⊂ N: range sequence, bitset, interval
sequence: array, list, list of arrays, etc

restriction operations must consider undefinedness
work by removing values from components
result is to remove strings from the domain

propagation events
representation invariant: many promising looking event
systems are not monotonic

Uppsala University Justin Pearson Strings in Constraint Programming

Native Strings

Three tightly related choices:

data structure
candidate lengths ⊂ N: range sequence, bitset, interval
candidate characters ⊂ N: range sequence, bitset, interval
sequence: array, list, list of arrays, etc

restriction operations must consider undefinedness
work by removing values from components
result is to remove strings from the domain

propagation events
representation invariant: many promising looking event
systems are not monotonic

Uppsala University Justin Pearson Strings in Constraint Programming

Another Approach — Dashed Strings

A dashed string (D.S.) is a concatenation
Sl1,u1

1 Sl2,u2
2 · · ·Slk ,uk

k of blocks Sli ,ui
i such that:

0 < k ≤ b Si ⊆ Σ 0 ≤ li ≤ ui ≤ b Σk
i=1li ≤ b

Each block Sli ,ui
i represents the set of strings of S∗

i having
length in [li ,ui].
Graphical interpretation: continuous segments of length li
are the mandatory part (characters that must appear),
dashed segments of length ui − li are the optional part
(characters that may appear)

e.g., graphical representation of D.S.
{B,b}1,1{o}2,4{m}1,1{!}0,3

B, b o o o o m ! ! !

Uppsala University Justin Pearson Strings in Constraint Programming

Conclusions

Lots of experiments, we are competitive. Implementations
exists, but they are not exactly off the shelf at the moment.
Dashed strings often work better as more information can
be propagated about the length, but this makes the
propagators more complicated.

Uppsala University Justin Pearson Strings in Constraint Programming

Thank you

Questions?

Uppsala University Justin Pearson Strings in Constraint Programming

References

J. Scott. Other Things Besides Number: Abstraction,
Constraint Propagation, and String Variable Types.
PhD thesis, Department of Information Technology,
Uppsala University, Sweden, March 2016.
http: // urn. kb. se/ resolve? urn= urn: nbn: se:

uu: diva-273311

Roberto Amadini, Pierre Flener, Justin Pearson,
Joseph D. Scott, Peter J. Stuckey, Guido Tack:
MiniZinc with Strings. LOPSTR 2016: 59-75

Uppsala University Justin Pearson Strings in Constraint Programming

http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311
http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-273311

Roberto Amadini, Graeme Gange, Peter J. Stuckey:
Sweep-Based Propagation for String Constraint
Solving. AAAI 2018: 6557-6564

Roberto Amadini, Graeme Gange, Peter J. Stuckey:
Propagating Regular Membership with Dashed
Strings. CP 2018: 13-29

Uppsala University Justin Pearson Strings in Constraint Programming

