Fair Termination for Parameterized Probabilistic Concurrent Systems (TACAS'17)

Ondřej Lengál¹ Anthony W. Lin² Rupak Majumdar³ Philipp Rümmer⁴

¹Brno University of Technology, Czech Republic ²Department of Computer Science, University of Oxford, UK ³MPI-SWS Kaiserslautern, Germany ⁴Uppsala University, Sweden

9 May 2019 (MOSCA'19)

Parameterized probabilistic concurrent systems

- Parameterized probabilistic concurrent systems
- Liveness

- Parameterized probabilistic concurrent systems
- Liveness
- Fairness

- Parameterized probabilistic concurrent systems
- Liveness
- Fairness
- Regular model checking

Herman's protocol (merging version)

ring topology, leader election

- ring topology, leader election
- scheduler selects processes

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 > 1 tokens
- stable configuration:
 - 1 token (leader)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:

 > 1 tokens

 stable configuration:

 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

Herman's algorithm:

when selected:

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:

 > 1 tokens

 stable configuration:

 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token:

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token: return

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token: return
 - if has token: flip a coin

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token: return
 - if has token: flip a coin
 - heads: pass the token clockwise

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token: return
 - if has token: flip a coin
 - heads: pass the token clockwise
 - tails: keep the token

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

- when selected:
 - if no token: return
 - if has token: flip a coin
 - heads: pass the token clockwise
 - tails: keep the token
- if a process with a token gets another one:

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

Herman's algorithm:

- when selected:
 - if no token: return
 - if has token: flip a coin
 - heads: pass the token clockwise
 - tails: keep the token

■ if a process with a token gets another one: merge them

Herman's protocol (merging version)

- ring topology, leader election
 scheduler selects processes
 unstable configuration:
 - > 1 tokens
- stable configuration:
 - 1 token (leader)
- **goal**: $\models \Diamond$ **leader** is elected

Herman's algorithm:

- when selected:
 - if no token: return
 - if has token: flip a coin
 - heads: pass the token clockwise
 - tails: keep the token

■ if a process with a token gets another one: merge them

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

Herman's protocol (merging version)

- really?
- Fairness needed!

Herman's protocol (merging version)

- really?
- Fairness needed!
- But which fairness?

Herman's protocol (merging version)

- really?
- Fairness needed!
- But which fairness?
- We use finitary fairness

Setting

Liveness of Fair Parameterized Probabilistic Concurrent Systems

Setting

- Liveness of Fair Parameterized Probabilistic Concurrent Systems
 - Parameterized Concurrent Systems: N finite-state processes

Setting

- Liveness of Fair Parameterized Probabilistic Concurrent Systems
 - Parameterized Concurrent Systems: N finite-state processes
 - Probabilistic: each process can flip a coin
Liveness of Fair Parameterized Probabilistic Concurrent Systems

- Parameterized Concurrent Systems: N finite-state processes
- Probabilistic: each process can flip a coin
- Fair: each process will have the opportunity to move

Liveness of Fair Parameterized Probabilistic Concurrent Systems

- Parameterized Concurrent Systems: N finite-state processes
- Probabilistic: each process can flip a coin
- Fair: each process will have the opportunity to move
- Liveness: a good configuration is always reachable with Pr = 1

- Liveness of Fair Parameterized Probabilistic Concurrent Systems
 - Parameterized Concurrent Systems: N finite-state processes
 - Probabilistic: each process can flip a coin
 - Fair: each process will have the opportunity to move
 - Liveness: a good configuration is always reachable with Pr = 1
- Examples: Herman's protocol, Israeli-Jalfon protocol, population protocols, ...

Liveness of Fair Parameterized Probabilistic Concurrent Systems

- Parameterized Concurrent Systems: N finite-state processes
- Probabilistic: each process can flip a coin
- Fair: each process will have the opportunity to move
- Liveness: a good configuration is always reachable with Pr = 1
- Examples: Herman's protocol, Israeli-Jalfon protocol, population protocols, ...
- An infinite-state Markov Decision Process (MDP)

Liveness of Fair Parameterized Probabilistic Concurrent Systems

- Parameterized Concurrent Systems: N finite-state processes
- Probabilistic: each process can flip a coin
- Fair: each process will have the opportunity to move
- Liveness: a good configuration is always reachable with Pr = 1
- Examples: Herman's protocol, Israeli-Jalfon protocol, population protocols, ...
- An infinite-state Markov Decision Process (MDP)

Weakly-finite MDPs:

for a fixed initial configuration, the set of reachable states is finite

Weakly-finite MDPs:

for a fixed initial configuration, the set of reachable states is finite Almost-sure liveness in weakly-finite MDPs:

only distinguish = 0 and > 0 transitions

Weakly-finite MDPs:

for a fixed initial configuration, the set of reachable states is finite Almost-sure liveness in weakly-finite MDPs:

only distinguish = 0 and > 0 transitions

Weakly-finite MDPs:

■ for a fixed initial configuration, the set of reachable states is finite Almost-sure liveness in weakly-finite MDPs:

only distinguish = 0 and > 0 transitions

Lemma

 $Pr(s_0 \models \Diamond F) = 1$ iff *Proc.* has winning strategy from all $s \in Reach(s_0)$.

- Regular Model Checking: Uppsala & Paris
 - Bouajjani, Jonsson, Nilsson, and Touili [CAV'00]

- Regular Model Checking: Uppsala & Paris
 - Bouajjani, Jonsson, Nilsson, and Touili [CAV'00]
 - usually safety of deterministic systems

- Regular Model Checking: Uppsala & Paris
 - Bouajjani, Jonsson, Nilsson, and Touili [CAV'00]
 - usually safety of deterministic systems
- liveness in parameterized probabilistic concurrent systems:
 - extension of Lin & Rümmer [CAV'16]

- Regular Model Checking: Uppsala & Paris
 - Bouajjani, Jonsson, Nilsson, and Touili [CAV'00]
 - usually safety of deterministic systems
- liveness in parameterized probabilistic concurrent systems:
 - extension of Lin & Rümmer [CAV'16]
- this talk: embedding of fairness into the system

Regular Model Checking

Regular Model Checking

• A configuration: a word over Σ : **D**NDN

Regular Model Checking

- A configuration: a word over Σ : **D**NDN
- A set of configurations: a finite automaton A over Σ

Regular Model Checking

- A configuration: a word over Σ : **D**NDN
- A set of configurations: a finite automaton A over Σ

Transition relation: a (length-preserving) transducer τ

Regular Model Checking for 2-player reachability games:

Regular Model Checking for 2-player reachability games:

- Liveness:
 - Start, Good, τ_1 , and τ_2 given

Regular Model Checking for 2-player reachability games:

Liveness:

- Start, Good, τ_1 , and τ_2 given
- Task: find

Regular Model Checking for 2-player reachability games:

Liveness:

- Start, Good, τ_1 , and τ_2 given
- Task: find
 - FA Inv over-approximating reachable states

Regular Model Checking for 2-player reachability games:

Liveness:

- Start, Good, τ_1 , and τ_2 given
- Task: find
 - FA Inv over-approximating reachable states, and
 - transducer P< encoding progress for Process

Regular Model Checking for 2-player reachability games:

Liveness:

- Start, Good, τ_1 , and τ_2 given
- Task: find
 - FA Inv over-approximating reachable states, and
 - transducer *P*< encoding **progress** for Process

Advice bits

Regular Model Checking for 2-player reachability games:

- Liveness:
- Start, Good, τ_1 , and τ_2 given
- Advice bits: local conditions on FA Inv and transducer P_< over Σ

Regular Model Checking for 2-player reachability games:

Liveness:

Start, Good, τ_1 , and τ_2 given

Advice bits: local conditions on FA Inv and transducer P_< over Σ

1 Start \subseteq Inv 2 $\tau_{\cup}(Inv) \subseteq Inv$

Regular Model Checking for 2-player reachability games:

Liveness:

Start, Good, τ_1 , and τ_2 given

Advice bits: local conditions on FA Inv and transducer $P_{<}$ over Σ

- 2 $\tau_{\cup}(Inv) \subseteq Inv$
- 3 $P_{<}$ is a strict preorder (i.e., irreflexive, transitive)

Regular Model Checking for 2-player reachability games:

Liveness:

Start, Good, τ_1 , and τ_2 given

Advice bits: local conditions on FA Inv and transducer P_< over Σ

- 2 $\tau_{\cup}(Inv) \subseteq Inv$
- 3 $P_{<}$ is a strict preorder (i.e., irreflexive, transitive)

4 For any evil transition from *Inv* \ Good to s_e, there is an angelic transition from s_e that

- goes to Inv and
- progresses w.r.t. P<

$$\begin{array}{l} \forall x \in \mathit{Inv} \setminus \mathit{Good}, \quad \forall y \in \Sigma^* \setminus \mathit{Good}: \\ (x \rightarrow_{\tau_1} y) \Rightarrow (\exists z \in \mathit{Inv}: (y \rightarrow_{\tau_2} z \land z <_P x)) \end{array}$$

k-Fairness

k-Fairness

intuition: binds the scope of \Box and \Diamond operators to *k* steps.

k-Fairness

- intuition: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
 - weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

► A cannot hold for *k* consecutive steps without *B* holding.

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

► A cannot hold for *k* consecutive steps without *B* holding.

strong (compassion): $\Box \Diamond A \Rightarrow \Box \Diamond B$

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

A cannot hold for k consecutive steps without B holding.

strong (compassion): $\Box \Diamond A \Rightarrow \Box \Diamond B$

No path satisfies $\psi_k \wedge \Box \neg B$.

 $\psi_0 = true$ $\psi_i = \Diamond (A \land \bigcirc \psi_{i-1})$

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

A cannot hold for k consecutive steps without B holding.

strong (compassion): $\Box \Diamond A \Rightarrow \Box \Diamond B$

No path satisfies $\psi_k \wedge \Box \neg B$.

 $\psi_0 = true$ $\psi_i = \Diamond (A \land \bigcirc \psi_{i-1})$

A cannot hold k times without B holding at some point.
Finitary Fairness — [Alur & Henzinger'98]

k-Fairness

- *intuition*: binds the scope of \Box and \Diamond operators to *k* steps.
- weak (justice): $\Diamond \Box A \Rightarrow \Box \Diamond B$

No (sub-)path of length *k* satisfies $\Box(A \land \neg B)$.

A cannot hold for k consecutive steps without B holding.

strong (compassion): $\Box \Diamond A \Rightarrow \Box \Diamond B$

No path satisfies $\psi_k \wedge \Box \neg B$.

 $\psi_0 = true$ $\psi_i = \Diamond (A \land \bigcirc \psi_{i-1})$

A cannot hold k times without B holding at some point.

Finitary fairness: if k-fair for some k

Encoding Finitary Fairness into RMC:

Fix some k

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps
- Append a counter to encoding of every process, initialized to maximum
 - the maximum value is bounded

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps
- Append a counter to encoding of every process, initialized to maximum
 - the maximum value is bounded
- When a process is selected, reset its counter to max. value

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps
- Append a counter to encoding of every process, initialized to maximum
 - the maximum value is bounded
- When a process is selected, reset its counter to max. value
- When a process is not selected, decrement its counter

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps
- Append a counter to encoding of every process, initialized to maximum
 - the maximum value is bounded
- When a process is selected, reset its counter to max. value
- When a process is not selected, decrement its counter
- Good configurations are also those where some counter = 0

- Fix some k
- Example for process selection (weak fairness)
 - every process is selected at least once in k steps
- Append a counter to encoding of every process, initialized to maximum
 - the maximum value is bounded
- When a process is selected, reset its counter to max. value
- When a process is not selected, decrement its counter
- Good configurations are also those where some counter = 0
- Generalized to arbitrary weak and strong fairness

Example: Herman's protocol:

• w/o fairness: $\mathbb{N}|\mathbb{T}|\mathbb{T}|\mathbb{N}$

Example: Herman's protocol:

- w/o fairness: $\mathbb{N}|\mathbb{T}|\mathbb{T}|\mathbb{N}$
- w/ fairness: **N**110|**1**1111|**1**110|**N**100

Example: Herman's protocol:

- w/o fairness: $\mathbb{N}|\mathbb{T}|\mathbb{T}|\mathbb{N}$
- w/ fairness: **N**110|**T**1111|**T**110|**N**100
- scheduler picks a process

 N110
 1111
 100

Example: Herman's protocol:

- w/o fairness: $\mathbb{N}|\mathbb{T}|\mathbb{T}|\mathbb{N}$
- w/ fairness: **N**110|**T**1111|**T**110|**N**100
- scheduler picks a process

 N110
 1111
- process player decrements/resets counters

 N100

 1110

 N0000

Theorem

Let *S* be a regular representation of an MDP with finitary fairness constraints *C*. The presented transformation yields a regular representation of an MDP S_F (without fairness constraints) such that (if *C* are realizable)

 $\Pr(Start \models \Diamond Good) = 1$ *iff* $\Pr(Start_F \models \Diamond Good_F) = 1$

Moran process

a model of genetic drift

- a model of genetic drift
- linear array

- a model of genetic drift
- linear array
- alleles A or B

- a model of genetic drift
- linear array
- alleles A or B
- rules:

Moran process

- a model of genetic drift
- linear array
- alleles A or B
- rules:

► ... (A) (A) ...

Moran process

- a model of genetic drift
- linear array
- alleles A or B
- rules:

Moran process

- a model of genetic drift
 linear array
 - alleles A or B
 - rules:

Moran process

a model of genetic drift linear array alleles A or B rules: ► (A) (A) $\blacktriangleright (A | B) \longrightarrow (B | B) and (B | A) \longrightarrow (B | B)$ • goal: \mathbf{A}^* or \mathbf{B}^*

- a model of genetic drift linear array alleles A or B rules: ► (A) (A) \blacktriangleright ... $\bigcirc (A \land B)$... \rightsquigarrow ... $\bigcirc (A \land A)$... and ... $\bigcirc (B \land A)$... \rightsquigarrow ... $\bigcirc (A \land A)$ $A B \longrightarrow B B and B A \longrightarrow B B$ \square goal: $(A)^*$ or $(B)^*$
- Cell cycle switch similar, but has an intermediate state

Coin game

- a population of agents
- every agent has one currency: Dollars or Euros
- in each step, an agent either:

Coin game

- a population of agents
- every agent has one currency: Dollars or Euros
- in each step, an agent either:
 - keeps it currency or
 - randomly selects k neighbours and changes currency to the majority

Coin game

- a population of agents
- every agent has one currency: Dollars or Euros
- in each step, an agent either:
 - keeps it currency or
 - randomly selects k neighbours and changes currency to the majority
- goal: *D*^{*} or *E*^{*}

Evaluation

Encoding implemented in FAIRYTAIL

Evaluation

Encoding implemented in FAIRYTAIL

Input:

- FAs for Start, Good
- transducers for τ_1 , and τ_2
Encoding implemented in FAIRYTAIL

Input:

- FAs for Start, Good
- transducers for τ_1 , and τ_2

- ► FAs for Start^F, Good^F
- transducers for τ_1^F , and τ_2^F

Encoding implemented in FAIRYTAIL

Input:

- FAs for Start, Good
- transducers for τ_1 , and τ_2

- ► FAs for Start^F, Good^F
- transducers for τ_1^F , and τ_2^F
- SLRP [Lin & Rümmer, CAV'16] used to find advice bits

Encoding implemented in FAIRYTAIL

Input:

- FAs for Start, Good
- transducers for τ_1 , and τ_2

- ► FAs for Start^F, Good^F
- transducers for τ_1^F , and τ_2^F
- SLRP [Lin & Rümmer, CAV'16] used to find advice bits
 - SYNTHESISE: use a SAT solver (Sat4j) to obtain a candidate

Encoding implemented in FAIRYTAIL

Input:

- FAs for Start, Good
- transducers for τ_1 , and τ_2

- ► FAs for Start^F, Good^F
- transducers for τ_1^F , and τ_2^F
- SLRP [Lin & Rümmer, CAV'16] used to find advice bits
 - SYNTHESISE: use a SAT solver (Sat4j) to obtain a candidate
 - VERIFY: check the candidate is OK/refine SAT formula

Table: Results of experiments (timeout = 10 hours).

Case study	Time
Herman's protocol (merge, line)	3.64 s
Herman's protocol (annih., line)	4.33 s
Herman's protocol (merge, ring)	4.31 s
Herman's protocol (annih., ring)	4.61 s
Moran process (2 types, line)	2 m 48 s
Moran process (3 types, line)	56 m 14 s
Cell cycle switch (1 types, line)	43.94 s
Cell cycle switch (2 types, line)	9h 46 m
Clustering (2 types, line)	10 m 30 s
Clustering (3 types, line)	T/O
Coin game ($k = 3$, clique)	1 m 0 s

Solution to Herman's protocol (merge, ring)

Inv

 $P_{<}$

A nice symbolic framework for reasoning about parameterized probabilistic concurrent systems.

- A nice symbolic framework for reasoning about parameterized probabilistic concurrent systems.
- In this talk extended with finitary fairness.
 - a natural notion of fairness in such systems

- A nice symbolic framework for reasoning about parameterized probabilistic concurrent systems.
- In this talk extended with finitary fairness.
 - a natural notion of fairness in such systems

Future work:

many optimizations possible

- A nice symbolic framework for reasoning about parameterized probabilistic concurrent systems.
- In this talk extended with finitary fairness.
 - a natural notion of fairness in such systems

Future work:

- many optimizations possible
- more general systems (e.g., grid topology)

- A nice symbolic framework for reasoning about parameterized probabilistic concurrent systems.
- In this talk extended with finitary fairness.
 - a natural notion of fairness in such systems

Future work:

- many optimizations possible
- more general systems (e.g., grid topology)
- more general fairness