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1Brno University of Technology, Czech Republic
2Department of Computer Science, University of Oxford, UK

3MPI-SWS Kaiserslautern, Germany
4Uppsala University, Sweden

9 May 2019 (MOSCA’19)



Outline

Parameterized probabilistic concurrent systems

Liveness

Fairness

Regular model checking
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Motivating Example
Herman’s protocol (merging version)

ring topology, leader election
scheduler selects processes
unstable configuration:
I > 1 tokens

stable configuration:
I 1 token (leader)

goal: |= ♦leader is elected
Herman’s algorithm:

when selected:
I if no token: return
I if has token: flip a coin

• heads: pass the token clockwise
• tails: keep the token

if a process with a token gets another one: merge them

Pr(|= ♦leader is elected) = 1
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 3 / 21



Motivating Example

Herman’s protocol (merging version)

Pr(|= ♦leader is elected) = 1

really?
Fairness needed!
But which fairness?
We use finitary fairness
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 4 / 21



Motivating Example

Herman’s protocol (merging version)

Pr(|= ♦leader is elected) = 1

really?

Fairness needed!
But which fairness?
We use finitary fairness
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Setting

Liveness of Fair Parameterized Probabilistic Concurrent Systems

I Parameterized Concurrent Systems: N finite-state processes
I Probabilistic: each process can flip a coin
I Fair: each process will have the opportunity to move
I Liveness: a good configuration is always reachable with Pr = 1

Examples: Herman’s protocol, Israeli-Jalfon protocol, population
protocols, . . .
An infinite-state Markov Decision Process (MDP)

F

1
2

1
2

1

1
2

1
2

Evil scheduler

Random process

Pr(s0 |= ♦F )
?
= 1
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 5 / 21



Setting

Liveness of Fair Parameterized Probabilistic Concurrent Systems
I Parameterized Concurrent Systems: N finite-state processes
I Probabilistic: each process can flip a coin
I Fair: each process will have the opportunity to move
I Liveness: a good configuration is always reachable with Pr = 1

Examples: Herman’s protocol, Israeli-Jalfon protocol, population
protocols, . . .
An infinite-state Markov Decision Process (MDP)

F

1
2

1
2

1

1
2

1
2

Evil scheduler

Random process

Pr(s0 |= ♦F )
?
= 1
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Almost-Sure Liveness

Weakly-finite MDPs:
for a fixed initial configuration, the set of reachable states is finite

Almost-sure liveness in weakly-finite MDPs:
only distinguish = 0 and > 0 transitions

Lemma
Pr(s0 |= ♦F ) = 1 iff Proc. has winning strategy from all s ∈ Reach(s0).
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Symbolic Framework: Regular Model Checking

Regular Model Checking for liveness in param. prob. conc. systems
under all schedulers

Regular Model Checking: Uppsala & Paris
I Bouajjani, Jonsson, Nilsson, and Touili [CAV’00]
I usually safety of deterministic systems

liveness in parameterized probabilistic concurrent systems:
I extension of Lin & Rümmer [CAV’16]

this talk: embedding of fairness into the system
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Symbolic Framework: Regular Model Checking

Regular Model Checking

A configuration: a word over Σ: T N T N N

A set of configurations: a finite automaton A over Σ

T , N

T

T , N

Transition relation: a (length-preserving) transducer τ

T / T

N / N

T / N

N / T

T / T

T / T

N / N
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Symbolic Framework: Regular Model Checking

Regular Model Checking for 2-player reachability games:

Liveness:
I Start , Good , τ1, and τ2 given
I Task: find

• FA Inv over-approximating reachable states, and
• transducer P< encoding progress for Process

}
Advice bits
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Symbolic Framework: Regular Model Checking

Regular Model Checking for 2-player reachability games:
Liveness:
Start , Good , τ1, and τ2 given
Advice bits: local conditions on FA Inv and transducer P< over Σ

1 Start ⊆ Inv
2 τ∪(Inv) ⊆ Inv
3 P< is a strict preorder (i.e., irreflexive, transitive)
4 For any evil transition from Inv \Good to se, there is an angelic

transition from se that
• goes to Inv and
• progresses w.r.t. P<

∀x ∈ Inv \Good , ∀y ∈ Σ∗ \Good :

(x →τ1 y)⇒ (∃z ∈ Inv : (y →τ2 z ∧ z <P x))
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Finitary Fairness — [Alur & Henzinger’98]

k -Fairness

intuition: binds the scope of � and ♦ operators to k steps.
weak (justice): ♦�A⇒ �♦B

No (sub-)path of length k satisfies �(A ∧ ¬B).

I A cannot hold for k consecutive steps without B holding.

strong (compassion): �♦A⇒ �♦B

No path satisfies ψk ∧�¬B.

ψ0 = true
ψi = ♦(A ∧©ψi−1)

I A cannot hold k times without B holding at some point.

Finitary fairness: if k -fair for some k
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 11 / 21



Finitary Fairness — [Alur & Henzinger’98]

k -Fairness
intuition: binds the scope of � and ♦ operators to k steps.
weak (justice): ♦�A⇒ �♦B

No (sub-)path of length k satisfies �(A ∧ ¬B).

I A cannot hold for k consecutive steps without B holding.

strong (compassion): �♦A⇒ �♦B

No path satisfies ψk ∧�¬B.

ψ0 = true
ψi = ♦(A ∧©ψi−1)

I A cannot hold k times without B holding at some point.

Finitary fairness: if k -fair for some k
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 11 / 21



Finitary Fairness — [Alur & Henzinger’98]

k -Fairness
intuition: binds the scope of � and ♦ operators to k steps.
weak (justice): ♦�A⇒ �♦B

No (sub-)path of length k satisfies �(A ∧ ¬B).

I A cannot hold for k consecutive steps without B holding.

strong (compassion): �♦A⇒ �♦B

No path satisfies ψk ∧�¬B.

ψ0 = true
ψi = ♦(A ∧©ψi−1)

I A cannot hold k times without B holding at some point.

Finitary fairness: if k -fair for some k
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Encoding Finitary Fairness into RMC

Encoding Finitary Fairness into RMC:

Fix some k
Example for process selection (weak fairness)
I every process is selected at least once in k steps

Append a counter to encoding of every process, initialized to
maximum
I the maximum value is bounded

When a process is selected, reset its counter to max. value
When a process is not selected, decrement its counter
Good configurations are also those where some counter = 0
Generalized to arbitrary weak and strong fairness
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Encoding Finitary Fairness into RMC

Example: Herman’s protocol:

w/o fairness: N | T | T | N

w/ fairness: N 1 1 0 | T 1 1 1 | T 1 1 0 | N 1 0 0

scheduler picks a process

N 1 1 0 | T 1 1 1 | T 1 1 0 | N 1 0 0

process player decrements/resets counters

N 1 0 0 | T 1 1 0 | T 1 1 1 | N 0 0 0
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Encoding Finitary Fairness into RMC

Theorem
Let S be a regular representation of an MDP with finitary fairness
constraints C. The presented transformation yields a regular
representation of an MDP SF (without fairness constraints) such that (if
C are realizable)

Pr(Start |= ♦Good) = 1 iff Pr(StartF |= ♦GoodF ) = 1

Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 14 / 21



Case Studies: Population Protocols

Moran process

a model of genetic drift
linear array

alleles A or B

rules:

I . . . A . . . . . . A . . .

I . . . A B . . . . . . A A . . . and . . . B A . . . . . . A A . . .

I . . . A B . . . . . . B B . . . and . . . B A . . . . . . B B . . .

goal: A
∗

or B
∗

Cell cycle switch — similar, but has an intermediate state
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Case Studies: Population Protocols

Clustering

linear array

alleles A or B

rules:

I . . . A B . . . . . . B A . . . and . . . B A . . . . . . A B . . .

I . . . A B . . . . . . B A . . . and . . . B A . . . . . . A B . . .

goal: A
∗

B
∗

or B
∗

A
∗
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Case Studies: Population Protocols

Coin game

a population of agents
every agent has one currency: Dollars or Euros
in each step, an agent either:

I keeps it currency or
I randomly selects k neighbours and changes currency to the

majority

goal: D∗ or E∗

Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 17 / 21



Case Studies: Population Protocols

Coin game

a population of agents
every agent has one currency: Dollars or Euros
in each step, an agent either:
I keeps it currency or
I randomly selects k neighbours and changes currency to the

majority

goal: D∗ or E∗

Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 17 / 21



Case Studies: Population Protocols

Coin game

a population of agents
every agent has one currency: Dollars or Euros
in each step, an agent either:
I keeps it currency or
I randomly selects k neighbours and changes currency to the

majority

goal: D∗ or E∗
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Evaluation

Encoding implemented in FAIRYTAIL

Input:
I FAs for Start , Good
I transducers for τ1, and τ2

Output:
I FAs for StartF , GoodF

I transducers for τF
1 , and τF

2

SLRP [Lin & Rümmer, CAV’16] used to find advice bits
I SYNTHESISE: use a SAT solver (Sat4j) to obtain a candidate
I VERIFY: check the candidate is OK/refine SAT formula

Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 18 / 21



Evaluation

Encoding implemented in FAIRYTAIL

Input:
I FAs for Start , Good
I transducers for τ1, and τ2

Output:
I FAs for StartF , GoodF

I transducers for τF
1 , and τF

2
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Lengál, Lin, Majumdar, Rümmer Fair Termination for Probabilistic Systems MOSCA’19 18 / 21



Evaluation

Encoding implemented in FAIRYTAIL

Input:
I FAs for Start , Good
I transducers for τ1, and τ2

Output:
I FAs for StartF , GoodF

I transducers for τF
1 , and τF

2
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Evaluation

Table: Results of experiments (timeout = 10 hours).

Case study Time
Herman’s protocol (merge, line) 3.64 s
Herman’s protocol (annih., line) 4.33 s
Herman’s protocol (merge, ring) 4.31 s
Herman’s protocol (annih., ring) 4.61 s
Moran process (2 types, line) 2 m 48 s
Moran process (3 types, line) 56 m 14 s
Cell cycle switch (1 types, line) 43.94 s
Cell cycle switch (2 types, line) 9 h 46 m
Clustering (2 types, line) 10 m 30 s
Clustering (3 types, line) T/O
Coin game (k = 3, clique) 1 m 0 s
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Solution to Herman’s protocol (merge, ring)
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Conclusion

A nice symbolic framework for reasoning about parameterized
probabilistic concurrent systems.

In this talk extended with finitary fairness.
I a natural notion of fairness in such systems

Future work:
many optimizations possible
more general systems (e.g., grid topology)
more general fairness
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