
Solving String Constraints via
Hardware/Software Model

Checking

Jie-Hong Roland Jiang†, Fang Yu §

†National Taiwan University
§National Chengchi University

Meeting on String Constraints and Applications (MOSCA'19),

May 6-9, 2019, Bertinoro, Italy

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 2

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 3

Motivating Example

Vulnerable to attack pattern: ’ OR ‘1’=‘1’--

<?PHP
$user_pass = $_POST[“pwd”];
$user_id = $_POST[“uid”];
$query = mysql_query(“SELECT username
FROM accounts WHERE
passwd = ‘ “.$user_pass.” ’
AND userId = ‘ “.$user_id);

?>

2019/5/9 MOSCA 2019 4

Motivating Example

2019/5/9 MOSCA 2019

’ OR ‘1’=‘1’--

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘ 123

123

5

Introduction

String analysis

 Problem formulation

Input: an acyclic dependency graph extracted from
string manipulating program

Output: possible string values for each string variable
under program execution

2019/5/9 MOSCA 2019 6

Related Work

Automata-based approaches

Use finite automata to characterize the set of
possible string values in program execution

Can generate filter

Not support counterexample generation

SMT-based approaches

Use string theory to decide whether a set of
constraint is satisfiable

Can generate counterexample

Not support filter generation

2019/5/9 MOSCA 2019 7

Our Contribution

We propose

Automata-based string analysis method using
logic circuit representation

Advantages of logic circuit representation:

 Support both counterexample generation and filter
generation

 Maintain circuit size linear in the input circuit sizes
during string operations

2019/5/9 MOSCA 2019 8

MOSCA 2019

Motivation of Circuit Representation

 Historic evolution of data structures and tools in
logic synthesis and verification

Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD

AIG
16

50

100

100000

Espresso,

MIS, SIS

SIS, VIS,

MVSIS

ABC

Courtesy of Alan Mishchenko

2019/5/9 9

Introduction

Automata operation

2019/5/9 MOSCA 2019

𝐴𝑙𝑖𝑡1

𝐴𝑣𝑎𝑟1

𝐴𝑙𝑖𝑡2

𝐴𝑣𝑎𝑟2

𝐴1 = 𝐶𝐴𝑇 𝐴𝑙𝑖𝑡1 , 𝐴𝑣𝑎𝑟1

𝐴2 = 𝐶𝐴𝑇 𝐴1, 𝐴𝑙𝑖𝑡1

𝐴3 = 𝐶𝐴𝑇 𝐴2, 𝐴𝑣𝑎𝑟2

𝐴𝑠𝑖𝑛𝑘 = 𝐴3
10

Introduction

Counterexample gen.

2019/5/9 MOSCA 2019

SELECT username
FROM accounts
WHERE passwd = ‘

’ OR ‘1’=‘1’--

’ AND userId =

123

SELECT username FROM accounts
WHERE passwd = ‘’ OR ‘1’=‘1’–’
AND userId = 123

Goal: get witness of input string
for vulnerable code 𝑡𝑟𝑎𝑐𝑒1

𝑡𝑟𝑎𝑐𝑒𝑢𝑖𝑑

𝑡𝑟𝑎𝑐𝑒2 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡2

𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡1
𝑡𝑟𝑎𝑐𝑒𝑝𝑤𝑑

𝑞1, S, 𝑞2, E, 𝑞3, L, … , 𝑞𝑛−1, 3, 𝑞n

11

Introduction

Filter generation

2019/5/9 MOSCA 2019

𝐵𝑣𝑎𝑟1 ⊆ 𝐴𝑣𝑎𝑟1

𝐵𝑣𝑎𝑟2 ⊆ 𝐴𝑣𝑎𝑟2

𝐵𝑠𝑖𝑛𝑘 ⊆ 𝐴𝑠𝑖𝑛𝑘

𝐵1

𝐵2

Goal: get black list for each
var_node to filter out
malicious input

12

Outline

Introduction

Circuit based solving of string
constraints

Circuit based solving of string+length
constraints

Conclusions

2019/5/9 MOSCA 2019 13

Preliminaries

A (nondeterministic) finite automaton 𝐴 =
𝑄, Σ, 𝐼, 𝑇, 𝑂

𝑄: finite state set

 Σ: finite alphabet

 𝐼 ⊆ 𝑄: set of initial states

 𝑇 ⊆ Σ × 𝑄 × 𝑄: transition relation

𝑂 ⊆ 𝑄: set of accepting states

Reserve a symbol for 𝜖 in Σ

ℒ 𝐴 denote the language (set of strings)
accepted by 𝐴

2019/5/9 MOSCA 2019 14

Preliminaries

Circuit representation

Boolean encoding on 𝑄, Σ

Use characteristic functions 𝐼 Ԧ𝑠 , 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ , 𝑂 Ԧ𝑠
to represent an automaton

Σ = {𝜖, 𝑎}

00 01 11 10

a a a

𝑥

𝑠1
′

𝐼

𝑂

𝑠2
′

𝑠2

𝑠1
𝑇

2019/5/9 MOSCA 2019 15

String/Automata Operations

Supported operations

 Intersection

Union

Concatenation

Replacement

Reverse

 Prefix

Suffix

 Emptiness checking

2019/5/9 MOSCA 2019 16

Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠1, Ԧ𝑠1

′ ∧ 𝑇2
𝜖 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2

′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2

𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2

17

Intersection

Circuit construction

2019/5/9 MOSCA 2019 18

Intersection

Counterexample generation

2019/5/9 MOSCA 2019 19

Intersection

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐼𝑛𝑡 𝐴1, 𝐴2
𝐵 can directly applied as a filter for 𝐴1 as well

as 𝐴2

2019/5/9 MOSCA 2019 20

Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2

21

Union

Circuit construction

2019/5/9 MOSCA 2019 22

Union

Counterexample generation

2019/5/9 MOSCA 2019 23

Union

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝑈𝑛𝑖 𝐴1, 𝐴2
𝐵1 = 𝐼𝑛𝑡 𝐵, 𝐴1 and 𝐵2 = 𝐼𝑛𝑡 𝐵, 𝐴2 form

legitimate filter for 𝐴1 and 𝐴2, respectively

2019/5/9 MOSCA 2019 24

Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′ ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2

25

Concatenation

Circuit construction

2019/5/9 MOSCA 2019 26

Concatenation

Counterexample generation

2019/5/9 MOSCA 2019 27

Concatenation

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐶𝑎𝑡 𝐴1, 𝐴2

 First construct 𝐵† = 𝐼𝑛𝑡 𝐴, 𝐵

 Let 𝐵1 be a copy of 𝐵† but with all the
transition between states of 𝛼 = 1 being
replaced with 𝜖-transition

 Let 𝐵2 be a copy of 𝐵† but with all the
transition between states of 𝛼 = 0 being
replaced with 𝜖-transition

2019/5/9 MOSCA 2019 28

Emptiness Checking

Decide whether an automaton 𝐴 accept
any string or not

𝑇 characterize one step of transition

Convert into sequential circuit, then apply
property directed reachability (PDR)

 “pdr” command in Berkeley ABC only takes
sequential circuits with single initial state and
transition functions

2019/5/9 MOSCA 2019 29

Emptiness Checking

Convert transition relation to transition
functions

 𝑛 new variables Ԧ𝑦 for 𝑛 = |Ԧ𝑠|

One new state variable 𝑧 with initial value 1

Output function: 𝜔 = 𝑂 𝑠 ∧ 𝑧

Next-state functions: 𝛿𝑖 = (𝑦𝑖) for state
variables 𝑠𝑖, 𝑖 = 1,… , 𝑛, and 𝛿𝑛+1 = 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑦 ∧ 𝑧
for state variable 𝑧

2019/5/9 MOSCA 2019 30

Emptiness checking

Circuit construction

2019/5/9 MOSCA 2019 31

Experiment Setting

Compared string constraint solvers

Our tool: SLOG

Automata-based tools: JSA, Stranger

SMT-based tools: CVC4, Norn, Z3-str2

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS

2019/5/9 MOSCA 2019 32

Experimental Setting

20000+ string analysis instances
generated from web applications

Replacement-free small instances

Replacement-free large instances

 Instances with replacement operation

2019/5/9 MOSCA 2019 33

Experimental Results (1/4)

Replacement-free small instances

2

2019/5/9 MOSCA 2019 34

Experimental Results (2/4)

Replacement-free large instances

2

2019/5/9 MOSCA 2019 35

Experimental Results (3/4)

Instances with replacement operation

2

2

2019/5/9 MOSCA 2019 36

Experimental Results (4/4)

SLOG performance on counterexample
generation

accumulated solving and counterexample generation time

2019/5/9 MOSCA 2019 37

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 38

Length Tracking

Circuit construction

Construct automaton 𝐴𝐿 = 𝑇𝑟𝑘𝐿𝑒𝑛(𝐴) with:

𝑇𝐿 Ԧ𝑥 , Ԧ𝑠, 𝑛, 𝑠′, 𝑛 = 𝑇 Ԧ𝑥, Ԧ𝑠, 𝑠′ ∧

(Ԧ𝑥 ≠ 𝜖 ∧ 𝑛’ = 𝑛 + 1 ∨

(Ԧ𝑥 = 𝜖 ∧ (𝑛′ = 𝑛)))

𝐼𝐿 Ԧ𝑠 = 𝐼(Ԧ𝑠)

𝑂𝐿 Ԧ𝑠 = 𝑂(Ԧ𝑠)

2019/5/9 MOSCA 2019 39

Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):

2019/5/9 MOSCA 2019

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ ∧ 𝑇2

𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2
𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2

Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2

40

Intersection

Circuit construction

2019/5/9 MOSCA 2019 41

Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛, Ԧ𝑠2
′
𝑚, 𝑛′ ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛, Ԧ𝑠2
′ , 𝑛′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2

42

Union

Circuit construction

2019/5/9 MOSCA 2019 43

Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = (¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛1, Ԧ𝑠2
′
𝑚, 𝑛1

′ ∧ 𝑛2 = 𝑛2
′) ∨

(𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛2, Ԧ𝑠2
′ , 𝑛2

′ ∧ (𝑛1 = 𝑛1
′)) ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′ ∧ (𝑛 = 𝑛′)

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2

44

Concatenation

Circuit construction

2019/5/9 MOSCA 2019 45

Prefix

Circuit construction

2019/5/9 MOSCA 2019 46

Experiment Setting

Compared string constraint solvers

Our tool: SLENT (using IC3IA model checker)

Automata-based tools: (UCSB) ABC

SMT-based tools: CVC4, Norn, S3P, Trau, Z3-
str3

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS

2019/5/9 MOSCA 2019 47

Experimental Results (1/3)

 2000+ instances converted from Kaluza
benchmarks involving only string concatenation
and length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(200s)

Z3str3 56.46 1017 983 0

CVC4 88.89 1017 983 0

Norn 2025.30 1013 983 4

ABC 255.76 1013 983 4

S3P 137.90 1015 983 2

Trau 123.85 1017 983 0

SLENT 1397.82 1013 983 4

48

Experimental Results (2/3)

 236 instances converted from Stranger
benchmarks with involving string-to-string
replaceall, concatenation, and length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 2282.84 109
(31)

111
(0)

0 16

S3P 605.79 30
(0)

114
(3)

22 70

Trau 687.49 54
(2)

139
(22)

5 38

SLENT 26692.55 88
(0)

141
(0)

7 0

49

Experimental Results (3/3)

101 instances converted from Stranger
benchmarks with involving language-to-
language replaceall, concatenation, and
length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 977.80 46
(2)

41
(0)

1 13

SLENT 4413.25 44
(0)

38
(0)

19 0

9 under TO 1800s

50

Conclusions

SLOG

 Logic circuit based automata manipulation
method for string analysis

Support both counterexample generation and filter
synthesis

Maintain circuit size linear in input circuit sizes for
string operations

Postpone language emptiness checking with model
checking at the end

2019/5/9 MOSCA 2019 51

Conclusions (cont’d)

SLENT

 Encode length information to string automata
as length-encoded automata

Construct characteristic functions of length-encoded
automata through automata manipulations that
correspond to string and length constraints

Leverage a symbolic model checker for infinite state
systems as an engine for language emptiness
checking

2019/5/9 MOSCA 2019 52

Conclusions (cont’d)

SLOG and SLENT are based on scalable
circuit representation and good at solving
complex string constraints

Counterexample generation and filter
synthesis are possible

Future work

Support complement operation

Allow relation on string variables

2019/5/9 MOSCA 2019 53

Acknowledgement

2019/5/9 MOSCA 2019

Hung-En WangTsung-Lin TsaiChun-Han LinShih-Yu Chen

54

Thanks for Your Attention!

Questions?

2019/5/9 MOSCA 2019 55

