Solving String Constraints via Hardware/Software Model Checking

Jie-Hong Roland Jiang⁺, Fang Yu §

⁺National Taiwan University [§]National Chengchi University

Meeting on String Constraints and Applications (MOSCA'19), May 6-9, 2019, Bertinoro, Italy

Outline

- Circuit based solving of string constraints (SLOG)
- □ Circuit based solving of string+length constraints (SLENT)
- Conclusions

- Circuit based solving of string constraints (SLOG)
- □ Circuit based solving of string+length constraints (SLENT)
- Conclusions

Motivating Example

Motivating Example

String analysis

- Problem formulation
 - Input: an acyclic dependency graph extracted from string manipulating program
 - Output: possible string values for each string variable under program execution

Related Work

Automata-based approaches

- Use finite automata to characterize the set of possible string values in program execution
- Can generate filter
- Not support counterexample generation

SMT-based approaches

- Use string theory to decide whether a set of constraint is satisfiable
- Can generate counterexample
- Not support filter generation

Our Contribution

□We propose

Automata-based string analysis method using logic circuit representation

□Advantages of logic circuit representation:

- Support both counterexample generation and filter generation
- Maintain circuit size linear in the input circuit sizes during string operations

Motivation of Circuit Representation

Historic evolution of data structures and tools in logic synthesis and verification

Outline

Introduction

Circuit based solving of string constraints

Circuit based solving of string+length constraints

Conclusions

Preliminaries

ΔA (nondeterministic) *finite automaton* $A = (Q, \Sigma, I, T, O)$

- Q: finite state set
- **\Sigma:** finite alphabet
- $I \subseteq Q$: set of initial states
- $\blacksquare T \subseteq \Sigma \times Q \times Q$: transition relation
- $\blacksquare 0 \subseteq Q$: set of accepting states
- **\Box** Reserve a symbol for ϵ in Σ
- $\Box \mathcal{L}(A)$ denote the *language* (set of strings) accepted by A

Preliminaries

Circuit representation

- Boolean encoding on Q, Σ
- Use characteristic functions $I(\vec{s})$, $T(\vec{x}, \vec{s}, \vec{s}')$, $O(\vec{s})$ to represent an automaton

String/Automata Operations

Supported operations

- Intersection
- Union
- Concatenation
- Replacement
- Reverse

Prefix

- Suffix
- Emptiness checking

□ Circuit construction

Construct automaton $A = INT(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$:

$$T_{INT}(\vec{x}, \vec{s}, \vec{s}') = T_1^{\epsilon}(\vec{x}, \vec{s}_1, \vec{s}_1') \wedge T_2^{\epsilon}(\vec{x}, \vec{s}_2, \vec{s}_2')$$
$$I_{INT}(\vec{s}) = I_1(\vec{s}_1) \wedge I_2(\vec{s}_2)$$
$$O_{INT}(\vec{s}) = O_1(\vec{s}_1) \wedge O_2(\vec{s}_2)$$

 $\vec{s} = (\vec{s}_1, \vec{s}_2)$

□ Circuit construction

Counterexample generation

$$\frac{A_1: (p_1, \sigma_1, \dots, p_\ell)}{A: ((p_1, q_1), \sigma_1, (p_2, q_2), \sigma_2, \dots, (p_\ell, q_\ell))} \text{ IntCex}$$

□ Filter generation

- Let *B* be the filter for $A = Int(A_1, A_2)$
- B can directly applied as a filter for A_1 as well as A_2

Circuit construction

Construct automaton $A = UNI(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$:

$$T_{UNI}(\vec{x}, \vec{s}, \vec{s}') = \left(\neg \alpha \land \neg \alpha' \land T_1(\vec{x}, \langle \vec{s}_2 \rangle_m, \langle \vec{s}_2' \rangle_m)\right) \lor \left(\alpha \land \alpha' \land T_2(\vec{x}, \vec{s}_2, \vec{s}_2')\right)$$
$$I_{UNI}(\vec{s}) = \left(\neg \alpha \land I_1(\langle \vec{s}_2 \rangle_m)\right) \lor \left(\alpha \land I_2(\vec{s}_2)\right)$$
$$O_{UNI}(\vec{s}) = \left(\neg \alpha \land O_1(\langle \vec{s}_1 \rangle_m)\right) \land \left(\alpha \land O_2(\vec{s}_2)\right)$$

 $\vec{s} = (\vec{s}_2, \alpha)$ $\langle \vec{s}_2 \rangle_m$: taking first m variables of \vec{s}_2 $\alpha = 0$: state in A_1 , $\alpha = 1$: state in A_2

MOSCA 2019

□ Circuit construction

MOSCA 2019

Counterexample generation

 $\frac{A_1: (q_1, \sigma_1, q_2, \sigma_2, \dots, q_\ell)}{A: ((q_1, c), \sigma_1, (q_2, c), \sigma_2, \dots, (q_\ell, c))} \quad \text{UNICEX}, \ c = 0$

$$\frac{A_1: (\bot) \qquad A_2: (q_1, \sigma_1, q_2, \sigma_2, \dots, q_\ell)}{A: ((q_1, c), \sigma_1, (q_2, c), \sigma_2, \dots, (q_\ell, c))} \text{ UNICEX, } c = 1$$

Filter generation

Let *B* be the filter for $A = Uni(A_1, A_2)$

■ $B_1 = Int(B, A_1)$ and $B_2 = Int(B, A_2)$ form legitimate filter for A_1 and A_2 , respectively

Circuit construction

Construct automaton $A = CAT(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1).\mathcal{L}(A_2)$:

$$T_{CAT}(\vec{x}, \vec{s}, \vec{s}') = \left(\neg \alpha \land \neg \alpha' \land T_1(\vec{x}, \langle \vec{s}_2 \rangle_m, \langle \vec{s}_2' \rangle_m) \right) \lor \\ \left(\alpha \land \alpha' \land T_2(\vec{x}, \vec{s}_2, \vec{s}_2') \right) \lor \\ \left((\vec{x} = \epsilon) \land \neg \alpha \land \alpha' \land O_1(\langle \vec{s}_2 \rangle_m) \land I_2(\vec{s}_2') \right)$$

$$I_{CAT}(\vec{s}) = \left(\neg \alpha \land I_1(\langle \vec{s}_2 \rangle_m)\right)$$

$$O_{CAT}(S) = (\alpha \land O_2(S_2))$$

$$\vec{s} = (\vec{s}_2, \alpha)$$

 $\langle \vec{s}_2 \rangle_m$: taking first m variables of \vec{s}_2

$$\alpha = 0$$
: state in A_1 , $\alpha = 1$: state in A_2

Counterexample generation

$$\frac{A_1: (q_1, \sigma_1, \dots, q_i)}{A_{\text{CAT}}: ((q_1, 0), \sigma_1, \dots, (q_i, 0), \epsilon, (q_{i+1}, 1), \sigma_{i+1}, \dots, (q_\ell, 1))} \text{ CATCEX}$$

□ Filter generation

- Let *B* be the filter for $A = Cat(A_1, A_2)$
- First construct $B^{\dagger} = Int(A, B)$
- Let B_1 be a copy of B^{\dagger} but with all the transition between states of $\alpha = 1$ being replaced with ϵ -transition
- Let B_2 be a copy of B^+ but with all the transition between states of $\alpha = 0$ being replaced with ϵ -transition

Emptiness Checking

- Decide whether an automaton A accept any string or not
- □ *T* characterize one step of transition
- Convert into sequential circuit, then apply property directed reachability (PDR)
 - "pdr" command in Berkeley ABC only takes sequential circuits with single initial state and transition functions

Emptiness Checking

Convert transition relation to transition functions

- **n** new variables \vec{y} for $n = |\vec{s}|$
- One new state variable z with initial value 1
- Output function: $\omega = (O(s) \land z)$
- Next-state functions: $\delta_i = (y_i)$ for state variables s_i , i = 1, ..., n, and $\delta_{n+1} = (T(\vec{x}, \vec{s}, \vec{y}) \land z)$ for state variable z

Emptiness checking

Circuit construction

MOSCA 2019

Experiment Setting

Compared string constraint solvers

- Our tool: SLOG
- Automata-based tools: JSA, Stranger
- SMT-based tools: CVC4, Norn, Z3-str2

Environment

- Intel Xeon 8-core CPU
- 16GB memory
- Ubuntu 12.04 LCS

Experimental Setting

□ 20000+ string analysis instances generated from web applications

- Replacement-free small instances
- Replacement-free large instances
- Instances with replacement operation

Experimental Results (1/4)

Replacement-free small instances

Experimental Results (2/4)

Replacement-free large instances

Experimental Results (3/4)

Instances with replacement operation

Experimental Results (4/4)

SLOG performance on counterexample generation

Group	#SAT	SolveTime (s)	CexGenTime (s)
Small Large Replacement	$8426 \\ 22 \\ 236$	$60664 \\ 4236 \\ 1015$	$ 481 \\ 18 \\ 25 $

accumulated solving and counterexample generation time

Circuit based solving of string constraints (SLOG)

Circuit based solving of string+length constraints (SLENT)

Conclusions

Length Tracking

Circuit construction

Construct automaton $A^L = TrkLen(A)$ with:

$$T^{L}(\vec{x}, \vec{s}, n, \vec{s'}, n) = T(\vec{x}, \vec{s}, \vec{s'}) \land$$

$$(((\vec{x} \neq \epsilon) \land (n' = n + 1)) \lor$$

$$((\vec{x} = \epsilon) \land (n' = n)))$$

$$I^{L}(\vec{s}) = I(\vec{s})$$

$$O^{L}(\vec{s}) = O(\vec{s})$$

Circuit construction

Construct automaton $A = INT(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1) \cap \mathcal{L}(A_2)$:

$$\begin{aligned} T_{INT}\left(\vec{x}, \vec{s}, \vec{n}, \vec{s}', \vec{n'}\right) &= T_1^{\epsilon}\left(\vec{x}, \vec{s}, \vec{n}, \vec{s}', \vec{n'}\right) \wedge T_2^{\epsilon}\left(\vec{x}, \vec{s}, \vec{n}, \vec{s}', \vec{n'}\right) \\ I_{INT}(\vec{s}) &= I_1(\vec{s}_1) \wedge I_2(\vec{s}_2) \\ O_{INT}(\vec{s}) &= O_1(\vec{s}_1) \wedge O_2(\vec{s}_2) \end{aligned}$$

$$\vec{s} = (\vec{s}_1, \vec{s}_2)$$

Circuit construction

MOSCA 2019

Circuit construction

Construct automaton $A = UNI(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1) \cup \mathcal{L}(A_2)$: $T_{UNI}\left(\vec{x},\vec{s},\vec{n},\vec{s}',\vec{n}'\right) = \left(\neg \alpha \land \neg \alpha' \land T_1\left(\vec{x},\langle \vec{s}_2 \rangle_m,\vec{n},\langle \vec{s}_2' \rangle_m,\vec{n}'\right)\right) \lor$ $\left(\alpha \wedge \alpha' \wedge T_2\left(\vec{x}, \vec{s}_2, \vec{n}, \vec{s}_2', \vec{n'}\right)\right)$ $I_{UNI}(\vec{s}) = (\neg \alpha \land I_1(\langle \vec{s}_2 \rangle_m)) \lor (\alpha \land I_2(\vec{s}_2))$ $O_{UNI}(\vec{s}) = (\neg \alpha \land O_1(\langle \vec{s}_1 \rangle_m)) \land (\alpha \land O_2(\vec{s}_2))$ $\vec{s} = (\vec{s}_2, \alpha)$ $\langle \vec{s}_2 \rangle_m$: taking first m variables of \vec{s}_2 $\alpha = 0$: state in A_1 , $\alpha = 1$: state in A_2

MOSCA 2019

□ Circuit construction

MOSCA 2019

Circuit construction

Construct automaton $A = CAT(A_1, A_2)$ with $\mathcal{L}(A) = \mathcal{L}(A_1).\mathcal{L}(A_2)$:

$$T_{CAT}\left(\vec{x}, \vec{s}, \vec{n}, \vec{s}', \vec{n'}\right) = \left(\neg \alpha \land \neg \alpha' \land T_1(\vec{x}, \langle \vec{s}_2 \rangle_m, \vec{n}_1, \langle \vec{s}_2' \rangle_m, \vec{n}_1') \land (\vec{n}_2 = \vec{n}_2')\right) \lor \left(\alpha \land \alpha' \land T_2(\vec{x}, \vec{s}_2, \vec{n}_2, \vec{s}_2', \vec{n}_2') \land (\vec{n}_1 = \vec{n}_1')\right) \lor \left((\vec{x} = \epsilon) \land \neg \alpha \land \alpha' \land O_1(\langle \vec{s}_2 \rangle_m) \land I_2(\vec{s}_2') \land (\vec{n} = \vec{n}')\right) I_{CAT}(\vec{s}) = \left(\neg \alpha \land I_1(\langle \vec{s}_2 \rangle_m)\right) O_{CAT}(\vec{s}) = \left(\alpha \land O_2(\vec{s}_2)\right)$$

$$\vec{s} = (\vec{s}_2, \alpha)$$

 $\langle \vec{s}_2 \rangle_m$: taking first m variables of \vec{s}_2
 $\alpha = 0$: state in A_1 , $\alpha = 1$: state in A_2

□ Circuit construction

MOSCA 2019

Prefix

46

Experiment Setting

Compared string constraint solvers

- Our tool: SLENT (using IC3_{IA} model checker)
- Automata-based tools: (UCSB) ABC
- SMT-based tools: CVC4, Norn, S3P, Trau, Z3str3

Environment

- Intel Xeon 8-core CPU
- 16GB memory
- Ubuntu 12.04 LCS

Experimental Results (1/3)

2000+ instances converted from Kaluza benchmarks involving only string concatenation and length constraints

solver	time (s)	#SAT	#UNSAT	#TO (200s)
Z3str3	56.46	1017	983	0
CVC4	88.89	1017	983	0
Norn	2025.30	1013	983	4
ABC	255.76	1013	983	4
S3P	137.90	1015	983	2
Trau	123.85	1017	983	0
SLENT	1397.82	1013	983	4

Experimental Results (2/3)

236 instances converted from Stranger benchmarks with involving <u>string-to-string</u> replaceall, concatenation, and length constraints

solver	time (s)	#SAT	#UNSAT	#TO (600s)	#abort
ABC	2282.84	109 (31)	111 (0)	0	16
S3P	605.79	30 (0)	114 (3)	22	70
Trau	687.49	54 (2)	139 (22)	5	38
SLENT	26692.55	88 (0)	141 (0)	7	0

Experimental Results (3/3)

101 instances converted from Stranger benchmarks with involving <u>language-to-</u> <u>language replaceall</u>, concatenation, and <u>length constraints</u>

solver	time (s)	#SAT	#UNSAT	#TO (600s)	#abort
ABC	977.80	46 (2)	41 (0)	1	13
SLENT	4413.25	44 (0)	38 (0)	19	0
				9 under	TO 1800s

Conclusions

□ SLOG

Logic circuit based automata manipulation method for string analysis

- Support both counterexample generation and filter synthesis
- Maintain circuit size linear in input circuit sizes for string operations
- Postpone language emptiness checking with model checking at the end

Conclusions (cont'd)

□ SLENT

Encode length information to string automata as length-encoded automata

- Construct characteristic functions of length-encoded automata through automata manipulations that correspond to string and length constraints
- Leverage a symbolic model checker for infinite state systems as an engine for language emptiness checking

Conclusions (cont'd)

SLOG and SLENT are based on scalable circuit representation and good at solving complex string constraints

Counterexample generation and filter synthesis are possible

□ Future work

- Support complement operation
- Allow relation on string variables

Acknowledgement

Shih-Yu Chen

Chun-Han Lin

Tsung-Lin Tsai

Hung-En Wang

Thanks for Your Attention!

Questions?