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Motivating Example

Vulnerable to attack pattern: ’ OR ‘1’=‘1’--

<?PHP
$user_pass = $_POST[“pwd”];
$user_id = $_POST[“uid”];
$query = mysql_query(“SELECT username 
FROM accounts WHERE 
passwd = ‘ “.$user_pass.” ’ 
AND userId = ‘ “.$user_id);

?>
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Motivating Example
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’ OR ‘1’=‘1’--

SELECT username FROM 
accounts WHERE 
passwd=‘’ OR ‘1’=‘1’--

SELECT username FROM 
accounts WHERE 
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘

SELECT username FROM 
accounts WHERE 
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘ 123

123
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Introduction

String analysis

 Problem formulation

Input: an acyclic dependency graph extracted from 
string manipulating program

Output: possible string values for each string variable 
under program execution
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Related Work

Automata-based approaches 

Use finite automata to characterize the set of 
possible string values in program execution

Can generate filter

Not support counterexample generation

SMT-based approaches

Use string theory to decide whether a set of 
constraint is satisfiable

Can generate counterexample

Not support filter generation
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Our Contribution

We propose

Automata-based string analysis method using 
logic circuit representation

Advantages of logic circuit representation:

 Support both counterexample generation and filter 
generation

 Maintain circuit size linear in the input circuit sizes 
during string operations
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MOSCA 2019

Motivation of Circuit Representation

 Historic evolution of data structures and tools in 
logic synthesis and verification

Problem Size
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CNF
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Courtesy of Alan Mishchenko
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Introduction

Automata operation
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𝐴𝑙𝑖𝑡1

𝐴𝑣𝑎𝑟1

𝐴𝑙𝑖𝑡2

𝐴𝑣𝑎𝑟2

𝐴1 = 𝐶𝐴𝑇 𝐴𝑙𝑖𝑡1 , 𝐴𝑣𝑎𝑟1

𝐴2 = 𝐶𝐴𝑇 𝐴1, 𝐴𝑙𝑖𝑡1

𝐴3 = 𝐶𝐴𝑇 𝐴2, 𝐴𝑣𝑎𝑟2

𝐴𝑠𝑖𝑛𝑘 = 𝐴3
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Introduction

Counterexample gen. 
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SELECT username 
FROM accounts 
WHERE passwd = ‘

’ OR ‘1’=‘1’--

’ AND userId =

123

SELECT username FROM accounts 
WHERE passwd = ‘’ OR ‘1’=‘1’–’
AND userId = 123

Goal: get witness of input string 
for vulnerable code 𝑡𝑟𝑎𝑐𝑒1

𝑡𝑟𝑎𝑐𝑒𝑢𝑖𝑑

𝑡𝑟𝑎𝑐𝑒2 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡2

𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡1
𝑡𝑟𝑎𝑐𝑒𝑝𝑤𝑑

𝑞1, S, 𝑞2, E, 𝑞3, L, … , 𝑞𝑛−1, 3, 𝑞n
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Introduction

Filter generation
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𝐵𝑣𝑎𝑟1 ⊆ 𝐴𝑣𝑎𝑟1

𝐵𝑣𝑎𝑟2 ⊆ 𝐴𝑣𝑎𝑟2

𝐵𝑠𝑖𝑛𝑘 ⊆ 𝐴𝑠𝑖𝑛𝑘

𝐵1

𝐵2

Goal: get black list for each 
var_node to filter out 
malicious input
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Preliminaries

A (nondeterministic) finite automaton 𝐴 =
𝑄, Σ, 𝐼, 𝑇, 𝑂

𝑄: finite state set

 Σ: finite alphabet 

 𝐼 ⊆ 𝑄: set of initial states

 𝑇 ⊆ Σ × 𝑄 × 𝑄: transition relation

𝑂 ⊆ 𝑄: set of accepting states

Reserve a symbol for 𝜖 in Σ

ℒ 𝐴 denote the language (set of strings) 
accepted by 𝐴

2019/5/9 MOSCA 2019 14



Preliminaries

Circuit representation

Boolean encoding on 𝑄, Σ

Use characteristic functions 𝐼 Ԧ𝑠 , 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ , 𝑂 Ԧ𝑠
to represent an automaton

Σ = {𝜖, 𝑎}

00 01 11 10

a a a

𝑥

𝑠1
′

𝐼

𝑂

𝑠2
′

𝑠2

𝑠1
𝑇
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String/Automata Operations

Supported operations

 Intersection

Union

Concatenation

Replacement

Reverse

 Prefix

Suffix

 Emptiness checking
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Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):
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Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠1, Ԧ𝑠1

′ ∧ 𝑇2
𝜖 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2

′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2

𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2
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Intersection 

Circuit construction 
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Intersection

Counterexample generation
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Intersection

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐼𝑛𝑡 𝐴1, 𝐴2
𝐵 can directly applied as a filter for 𝐴1 as well 

as 𝐴2
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Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union
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Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2
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Union

Circuit construction
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Union

Counterexample generation
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Union

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝑈𝑛𝑖 𝐴1, 𝐴2
𝐵1 = 𝐼𝑛𝑡 𝐵, 𝐴1 and 𝐵2 = 𝐼𝑛𝑡 𝐵, 𝐴2 form 

legitimate filter for 𝐴1 and 𝐴2, respectively
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Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :
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Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′ ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2
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Concatenation 

Circuit construction

2019/5/9 MOSCA 2019 26



Concatenation 

Counterexample generation
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Concatenation 

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐶𝑎𝑡 𝐴1, 𝐴2

 First construct 𝐵† = 𝐼𝑛𝑡 𝐴, 𝐵

 Let 𝐵1 be a copy of 𝐵† but with all the 
transition between states of 𝛼 = 1 being 
replaced with 𝜖-transition

 Let 𝐵2 be a copy of 𝐵† but with all the 
transition between states of 𝛼 = 0 being 
replaced with 𝜖-transition
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Emptiness Checking

Decide whether an automaton 𝐴 accept 
any string or not

𝑇 characterize one step of transition

Convert into sequential circuit, then apply 
property directed reachability (PDR)

 “pdr” command in Berkeley ABC only takes 
sequential circuits with single initial state and 
transition functions
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Emptiness Checking

Convert transition relation to transition 
functions

 𝑛 new variables Ԧ𝑦 for 𝑛 = |Ԧ𝑠|

One new state variable 𝑧 with initial value 1

Output function: 𝜔 = 𝑂 𝑠 ∧ 𝑧

Next-state functions: 𝛿𝑖 = (𝑦𝑖) for state 
variables 𝑠𝑖, 𝑖 = 1,… , 𝑛, and 𝛿𝑛+1 = 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑦 ∧ 𝑧
for state variable 𝑧

2019/5/9 MOSCA 2019 30



Emptiness checking

Circuit construction
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Experiment Setting

Compared string constraint solvers

Our tool: SLOG

Automata-based tools: JSA, Stranger

SMT-based tools: CVC4, Norn, Z3-str2

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS
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Experimental Setting

20000+ string analysis instances 
generated from web applications

Replacement-free small instances

Replacement-free large instances

 Instances with replacement operation
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Experimental Results (1/4)

Replacement-free small instances

2
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Experimental Results (2/4)

Replacement-free large instances

2
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Experimental Results (3/4)

Instances with replacement operation

2

2
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Experimental Results (4/4)

SLOG performance on counterexample 
generation

accumulated solving and counterexample generation time
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Length Tracking

Circuit construction

Construct automaton 𝐴𝐿 = 𝑇𝑟𝑘𝐿𝑒𝑛(𝐴) with:

𝑇𝐿 Ԧ𝑥 , Ԧ𝑠, 𝑛, 𝑠′, 𝑛 = 𝑇 Ԧ𝑥, Ԧ𝑠, 𝑠′ ∧

( Ԧ𝑥 ≠ 𝜖 ∧ 𝑛’ = 𝑛 + 1 ∨

( Ԧ𝑥 = 𝜖 ∧ (𝑛′ = 𝑛)))

𝐼𝐿 Ԧ𝑠 = 𝐼(Ԧ𝑠)

𝑂𝐿 Ԧ𝑠 = 𝑂(Ԧ𝑠)
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Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):

2019/5/9 MOSCA 2019

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ ∧ 𝑇2

𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2
𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2

Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2
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Intersection 

Circuit construction 
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Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union
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Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛, Ԧ𝑠2
′
𝑚, 𝑛′ ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛, Ԧ𝑠2
′ , 𝑛′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2
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Union

Circuit construction
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Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with 
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :
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Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = (¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛1, Ԧ𝑠2
′
𝑚, 𝑛1

′ ∧ 𝑛2 = 𝑛2
′ ) ∨

(𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛2, Ԧ𝑠2
′ , 𝑛2

′ ∧ (𝑛1 = 𝑛1
′ )) ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′ ∧ (𝑛 = 𝑛′)

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2
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Concatenation 

Circuit construction
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Prefix 

Circuit construction

2019/5/9 MOSCA 2019 46



Experiment Setting

Compared string constraint solvers

Our tool: SLENT (using IC3IA model checker)

Automata-based tools: (UCSB) ABC

SMT-based tools: CVC4, Norn, S3P, Trau, Z3-
str3

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS
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Experimental Results (1/3)

 2000+ instances converted from Kaluza
benchmarks involving only string concatenation 
and length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO 
(200s)

Z3str3 56.46 1017 983 0

CVC4 88.89 1017 983 0

Norn 2025.30 1013 983 4

ABC 255.76 1013 983 4

S3P 137.90 1015 983 2

Trau 123.85 1017 983 0

SLENT 1397.82 1013 983 4
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Experimental Results (2/3)

 236 instances converted from Stranger 
benchmarks with involving string-to-string 
replaceall, concatenation, and length constraints
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solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 2282.84 109 
(31)

111
(0)

0 16

S3P 605.79 30
(0)

114
(3)

22 70

Trau 687.49 54
(2)

139
(22)

5 38

SLENT 26692.55 88
(0)

141
(0)

7 0
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Experimental Results (3/3)

101 instances converted from Stranger 
benchmarks with involving language-to-
language replaceall, concatenation, and 
length constraints
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solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 977.80 46 
(2)

41
(0)

1 13

SLENT 4413.25 44
(0)

38
(0)

19 0

9 under TO 1800s
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Conclusions

SLOG

 Logic circuit based automata manipulation 
method for string analysis

Support both counterexample generation and filter 
synthesis

Maintain circuit size linear in input circuit sizes for 
string operations

Postpone language emptiness checking with model 
checking at the end 
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Conclusions (cont’d)

SLENT

 Encode length information to string automata 
as length-encoded automata

Construct characteristic functions of length-encoded 
automata through automata manipulations that 
correspond to string and length constraints

Leverage a symbolic model checker for infinite state 
systems as an engine for language emptiness 
checking
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Conclusions (cont’d)

SLOG and SLENT are based on scalable 
circuit representation and good at solving 
complex string constraints

Counterexample generation and filter 
synthesis are possible

Future work

Support complement operation

Allow relation on string variables
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Thanks for Your Attention!

Questions?
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