
Solving String Constraints via
Hardware/Software Model

Checking

Jie-Hong Roland Jiang†, Fang Yu §

†National Taiwan University
§National Chengchi University

Meeting on String Constraints and Applications (MOSCA'19),

May 6-9, 2019, Bertinoro, Italy

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 2

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 3

Motivating Example

Vulnerable to attack pattern: ’ OR ‘1’=‘1’--

<?PHP
$user_pass = $_POST[“pwd”];
$user_id = $_POST[“uid”];
$query = mysql_query(“SELECT username
FROM accounts WHERE
passwd = ‘ “.$user_pass.” ’
AND userId = ‘ “.$user_id);

?>

2019/5/9 MOSCA 2019 4

Motivating Example

2019/5/9 MOSCA 2019

’ OR ‘1’=‘1’--

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘

SELECT username FROM
accounts WHERE
passwd=‘’ OR ‘1’=‘1’--’
AND userId = ‘ 123

123

5

Introduction

String analysis

 Problem formulation

Input: an acyclic dependency graph extracted from
string manipulating program

Output: possible string values for each string variable
under program execution

2019/5/9 MOSCA 2019 6

Related Work

Automata-based approaches

Use finite automata to characterize the set of
possible string values in program execution

Can generate filter

Not support counterexample generation

SMT-based approaches

Use string theory to decide whether a set of
constraint is satisfiable

Can generate counterexample

Not support filter generation

2019/5/9 MOSCA 2019 7

Our Contribution

We propose

Automata-based string analysis method using
logic circuit representation

Advantages of logic circuit representation:

 Support both counterexample generation and filter
generation

 Maintain circuit size linear in the input circuit sizes
during string operations

2019/5/9 MOSCA 2019 8

MOSCA 2019

Motivation of Circuit Representation

 Historic evolution of data structures and tools in
logic synthesis and verification

Problem Size

Time1950-1970 1980 1990 2000

CNF
TT

SOP BDD

AIG
16

50

100

100000

Espresso,

MIS, SIS

SIS, VIS,

MVSIS

ABC

Courtesy of Alan Mishchenko

2019/5/9 9

Introduction

Automata operation

2019/5/9 MOSCA 2019

𝐴𝑙𝑖𝑡1

𝐴𝑣𝑎𝑟1

𝐴𝑙𝑖𝑡2

𝐴𝑣𝑎𝑟2

𝐴1 = 𝐶𝐴𝑇 𝐴𝑙𝑖𝑡1 , 𝐴𝑣𝑎𝑟1

𝐴2 = 𝐶𝐴𝑇 𝐴1, 𝐴𝑙𝑖𝑡1

𝐴3 = 𝐶𝐴𝑇 𝐴2, 𝐴𝑣𝑎𝑟2

𝐴𝑠𝑖𝑛𝑘 = 𝐴3
10

Introduction

Counterexample gen.

2019/5/9 MOSCA 2019

SELECT username
FROM accounts
WHERE passwd = ‘

’ OR ‘1’=‘1’--

’ AND userId =

123

SELECT username FROM accounts
WHERE passwd = ‘’ OR ‘1’=‘1’–’
AND userId = 123

Goal: get witness of input string
for vulnerable code 𝑡𝑟𝑎𝑐𝑒1

𝑡𝑟𝑎𝑐𝑒𝑢𝑖𝑑

𝑡𝑟𝑎𝑐𝑒2 𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡2

𝑡𝑟𝑎𝑐𝑒𝑙𝑖𝑡1
𝑡𝑟𝑎𝑐𝑒𝑝𝑤𝑑

𝑞1, S, 𝑞2, E, 𝑞3, L, … , 𝑞𝑛−1, 3, 𝑞n

11

Introduction

Filter generation

2019/5/9 MOSCA 2019

𝐵𝑣𝑎𝑟1 ⊆ 𝐴𝑣𝑎𝑟1

𝐵𝑣𝑎𝑟2 ⊆ 𝐴𝑣𝑎𝑟2

𝐵𝑠𝑖𝑛𝑘 ⊆ 𝐴𝑠𝑖𝑛𝑘

𝐵1

𝐵2

Goal: get black list for each
var_node to filter out
malicious input

12

Outline

Introduction

Circuit based solving of string
constraints

Circuit based solving of string+length
constraints

Conclusions

2019/5/9 MOSCA 2019 13

Preliminaries

A (nondeterministic) finite automaton 𝐴 =
𝑄, Σ, 𝐼, 𝑇, 𝑂

𝑄: finite state set

 Σ: finite alphabet

 𝐼 ⊆ 𝑄: set of initial states

 𝑇 ⊆ Σ × 𝑄 × 𝑄: transition relation

𝑂 ⊆ 𝑄: set of accepting states

Reserve a symbol for 𝜖 in Σ

ℒ 𝐴 denote the language (set of strings)
accepted by 𝐴

2019/5/9 MOSCA 2019 14

Preliminaries

Circuit representation

Boolean encoding on 𝑄, Σ

Use characteristic functions 𝐼 Ԧ𝑠 , 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ , 𝑂 Ԧ𝑠
to represent an automaton

Σ = {𝜖, 𝑎}

00 01 11 10

a a a

𝑥

𝑠1
′

𝐼

𝑂

𝑠2
′

𝑠2

𝑠1
𝑇

2019/5/9 MOSCA 2019 15

String/Automata Operations

Supported operations

 Intersection

Union

Concatenation

Replacement

Reverse

 Prefix

Suffix

 Emptiness checking

2019/5/9 MOSCA 2019 16

Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠1, Ԧ𝑠1

′ ∧ 𝑇2
𝜖 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2

′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2

𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2

17

Intersection

Circuit construction

2019/5/9 MOSCA 2019 18

Intersection

Counterexample generation

2019/5/9 MOSCA 2019 19

Intersection

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐼𝑛𝑡 𝐴1, 𝐴2
𝐵 can directly applied as a filter for 𝐴1 as well

as 𝐴2

2019/5/9 MOSCA 2019 20

Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2

21

Union

Circuit construction

2019/5/9 MOSCA 2019 22

Union

Counterexample generation

2019/5/9 MOSCA 2019 23

Union

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝑈𝑛𝑖 𝐴1, 𝐴2
𝐵1 = 𝐼𝑛𝑡 𝐵, 𝐴1 and 𝐵2 = 𝐼𝑛𝑡 𝐵, 𝐴2 form

legitimate filter for 𝐴1 and 𝐴2, respectively

2019/5/9 MOSCA 2019 24

Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑠′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, Ԧ𝑠2
′
𝑚 ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, Ԧ𝑠2
′ ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2

25

Concatenation

Circuit construction

2019/5/9 MOSCA 2019 26

Concatenation

Counterexample generation

2019/5/9 MOSCA 2019 27

Concatenation

Filter generation

 Let 𝐵 be the filter for 𝐴 = 𝐶𝑎𝑡 𝐴1, 𝐴2

 First construct 𝐵† = 𝐼𝑛𝑡 𝐴, 𝐵

 Let 𝐵1 be a copy of 𝐵† but with all the
transition between states of 𝛼 = 1 being
replaced with 𝜖-transition

 Let 𝐵2 be a copy of 𝐵† but with all the
transition between states of 𝛼 = 0 being
replaced with 𝜖-transition

2019/5/9 MOSCA 2019 28

Emptiness Checking

Decide whether an automaton 𝐴 accept
any string or not

𝑇 characterize one step of transition

Convert into sequential circuit, then apply
property directed reachability (PDR)

 “pdr” command in Berkeley ABC only takes
sequential circuits with single initial state and
transition functions

2019/5/9 MOSCA 2019 29

Emptiness Checking

Convert transition relation to transition
functions

 𝑛 new variables Ԧ𝑦 for 𝑛 = |Ԧ𝑠|

One new state variable 𝑧 with initial value 1

Output function: 𝜔 = 𝑂 𝑠 ∧ 𝑧

Next-state functions: 𝛿𝑖 = (𝑦𝑖) for state
variables 𝑠𝑖, 𝑖 = 1,… , 𝑛, and 𝛿𝑛+1 = 𝑇 Ԧ𝑥, Ԧ𝑠, Ԧ𝑦 ∧ 𝑧
for state variable 𝑧

2019/5/9 MOSCA 2019 30

Emptiness checking

Circuit construction

2019/5/9 MOSCA 2019 31

Experiment Setting

Compared string constraint solvers

Our tool: SLOG

Automata-based tools: JSA, Stranger

SMT-based tools: CVC4, Norn, Z3-str2

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS

2019/5/9 MOSCA 2019 32

Experimental Setting

20000+ string analysis instances
generated from web applications

Replacement-free small instances

Replacement-free large instances

 Instances with replacement operation

2019/5/9 MOSCA 2019 33

Experimental Results (1/4)

Replacement-free small instances

2

2019/5/9 MOSCA 2019 34

Experimental Results (2/4)

Replacement-free large instances

2

2019/5/9 MOSCA 2019 35

Experimental Results (3/4)

Instances with replacement operation

2

2

2019/5/9 MOSCA 2019 36

Experimental Results (4/4)

SLOG performance on counterexample
generation

accumulated solving and counterexample generation time

2019/5/9 MOSCA 2019 37

Outline

Introduction

Circuit based solving of string constraints
(SLOG)

Circuit based solving of string+length
constraints (SLENT)

Conclusions

2019/5/9 MOSCA 2019 38

Length Tracking

Circuit construction

Construct automaton 𝐴𝐿 = 𝑇𝑟𝑘𝐿𝑒𝑛(𝐴) with:

𝑇𝐿 Ԧ𝑥 , Ԧ𝑠, 𝑛, 𝑠′, 𝑛 = 𝑇 Ԧ𝑥, Ԧ𝑠, 𝑠′ ∧

(Ԧ𝑥 ≠ 𝜖 ∧ 𝑛’ = 𝑛 + 1 ∨

(Ԧ𝑥 = 𝜖 ∧ (𝑛′ = 𝑛)))

𝐼𝐿 Ԧ𝑠 = 𝐼(Ԧ𝑠)

𝑂𝐿 Ԧ𝑠 = 𝑂(Ԧ𝑠)

2019/5/9 MOSCA 2019 39

Intersection

Circuit construction

Construct automaton 𝐴 = 𝐼𝑁𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∩ ℒ(𝐴2):

2019/5/9 MOSCA 2019

𝑇𝐼𝑁𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = 𝑇1
𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ ∧ 𝑇2

𝜖 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′

𝐼𝐼𝑁𝑇 Ԧ𝑠 = 𝐼1 Ԧ𝑠1 ∧ 𝐼2 Ԧ𝑠2
𝑂𝐼𝑁𝑇 Ԧ𝑠 = 𝑂1 Ԧ𝑠1 ∧ 𝑂2 Ԧ𝑠2

Ԧ𝑠 = Ԧ𝑠1, Ԧ𝑠2

40

Intersection

Circuit construction

2019/5/9 MOSCA 2019 41

Circuit construction

Construct automaton 𝐴 = 𝑈𝑁𝐼(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 ∪ ℒ(𝐴2):

Union

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝑈𝑁𝐼 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = ¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛, Ԧ𝑠2
′
𝑚, 𝑛′ ∨

𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛, Ԧ𝑠2
′ , 𝑛′

𝐼𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚 ∨ 𝛼 ∧ 𝐼2 Ԧ𝑠2

𝑂𝑈𝑁𝐼 Ԧ𝑠 = ¬𝛼 ∧ 𝑂1 Ԧ𝑠1 𝑚 ∧ 𝛼 ∧ 𝑂2 Ԧ𝑠2

42

Union

Circuit construction

2019/5/9 MOSCA 2019 43

Concatenation

Circuit construction

Construct automaton 𝐴 = 𝐶𝐴𝑇(𝐴1, 𝐴2) with
ℒ 𝐴 = ℒ 𝐴1 . ℒ 𝐴2 :

2019/5/9 MOSCA 2019

Ԧ𝑠 = Ԧ𝑠2, 𝛼
Ԧ𝑠2 𝑚 : taking first m variables of Ԧ𝑠2
𝛼 = 0: state in 𝐴1, 𝛼 = 1: state in 𝐴2

𝑇𝐶𝐴𝑇 Ԧ𝑥, Ԧ𝑠, 𝑛, Ԧ𝑠′, 𝑛′ = (¬𝛼 ∧ ¬𝛼′ ∧ 𝑇1 Ԧ𝑥, Ԧ𝑠2 𝑚, 𝑛1, Ԧ𝑠2
′
𝑚, 𝑛1

′ ∧ 𝑛2 = 𝑛2
′) ∨

(𝛼 ∧ 𝛼′ ∧ 𝑇2 Ԧ𝑥, Ԧ𝑠2, 𝑛2, Ԧ𝑠2
′ , 𝑛2

′ ∧ (𝑛1 = 𝑛1
′)) ∨

Ԧ𝑥 = 𝜖 ∧ ¬𝛼 ∧ 𝛼′ ∧ 𝑂1 Ԧ𝑠2 𝑚 ∧ 𝐼2 Ԧ𝑠2
′ ∧ (𝑛 = 𝑛′)

𝐼𝐶𝐴𝑇 Ԧ𝑠 = ¬𝛼 ∧ 𝐼1 Ԧ𝑠2 𝑚

𝑂𝐶𝐴𝑇 Ԧ𝑠 = 𝛼 ∧ 𝑂2 Ԧ𝑠2

44

Concatenation

Circuit construction

2019/5/9 MOSCA 2019 45

Prefix

Circuit construction

2019/5/9 MOSCA 2019 46

Experiment Setting

Compared string constraint solvers

Our tool: SLENT (using IC3IA model checker)

Automata-based tools: (UCSB) ABC

SMT-based tools: CVC4, Norn, S3P, Trau, Z3-
str3

Environment

 Intel Xeon 8-core CPU

 16GB memory

Ubuntu 12.04 LCS

2019/5/9 MOSCA 2019 47

Experimental Results (1/3)

 2000+ instances converted from Kaluza
benchmarks involving only string concatenation
and length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(200s)

Z3str3 56.46 1017 983 0

CVC4 88.89 1017 983 0

Norn 2025.30 1013 983 4

ABC 255.76 1013 983 4

S3P 137.90 1015 983 2

Trau 123.85 1017 983 0

SLENT 1397.82 1013 983 4

48

Experimental Results (2/3)

 236 instances converted from Stranger
benchmarks with involving string-to-string
replaceall, concatenation, and length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 2282.84 109
(31)

111
(0)

0 16

S3P 605.79 30
(0)

114
(3)

22 70

Trau 687.49 54
(2)

139
(22)

5 38

SLENT 26692.55 88
(0)

141
(0)

7 0

49

Experimental Results (3/3)

101 instances converted from Stranger
benchmarks with involving language-to-
language replaceall, concatenation, and
length constraints

2019/5/9 MOSCA 2019

solver time (s) #SAT #UNSAT #TO
(600s)

#abort

ABC 977.80 46
(2)

41
(0)

1 13

SLENT 4413.25 44
(0)

38
(0)

19 0

9 under TO 1800s

50

Conclusions

SLOG

 Logic circuit based automata manipulation
method for string analysis

Support both counterexample generation and filter
synthesis

Maintain circuit size linear in input circuit sizes for
string operations

Postpone language emptiness checking with model
checking at the end

2019/5/9 MOSCA 2019 51

Conclusions (cont’d)

SLENT

 Encode length information to string automata
as length-encoded automata

Construct characteristic functions of length-encoded
automata through automata manipulations that
correspond to string and length constraints

Leverage a symbolic model checker for infinite state
systems as an engine for language emptiness
checking

2019/5/9 MOSCA 2019 52

Conclusions (cont’d)

SLOG and SLENT are based on scalable
circuit representation and good at solving
complex string constraints

Counterexample generation and filter
synthesis are possible

Future work

Support complement operation

Allow relation on string variables

2019/5/9 MOSCA 2019 53

Acknowledgement

2019/5/9 MOSCA 2019

Hung-En WangTsung-Lin TsaiChun-Han LinShih-Yu Chen

54

Thanks for Your Attention!

Questions?

2019/5/9 MOSCA 2019 55

