On Recompression for Word Equations

Artur Jeż

Meeting on String Constraints and Applications (MOSCA)
07.05.2019
Definition (Satisfiability of word equations)

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \rightarrow \Sigma^*$ satisfying the equation?

(Also more general: finitely many solutions, representation of all, ...)
Word Equations

Definition (Satisfiability of word equations)

Given equation $U = V$, where $U, V \in (\Sigma \cup X)^*$. Is there a substitution $S : X \to \Sigma^*$ satisfying the equation? (Also more general: finitely many solutions, representation of all, ...)

$$a X b X Y bbb = X abaa Y bY \quad S(X) = aa, S(Y) = bb$$
Definition (Satisfiability of word equations)

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \rightarrow \Sigma^*$ satisfying the equation? (Also more general: finitely many solutions, representation of all, ...)

$$aXbXYbbb = XabaaYbY \quad S(X) = aa, S(Y) = bb$$

$$aaaabaaabbb = aaaabaaabbb$$
Word Equations

Definition (Satisfiability of word equations)

Given equation $U = V$, where $U, V \in (\Sigma \cup \mathcal{X})^*$. Is there a substitution $S : \mathcal{X} \to \Sigma^*$ satisfying the equation? (Also more general: finitely many solutions, representation of all, ...)

We extend S to a $S : (\Sigma \cup \mathcal{X})^* \to \Sigma^*$; identity on Σ. $S(U)$ is a solution word. Length-minimal S: minimises $|S(U)|$. Usually: no $S(X) = \epsilon$, i.e. $S : \mathcal{X} \to \Sigma^+$.
Makanin’s algorithm 1977

High complexity [EXPSPACE ’98], difficult proof.
Makanin’s algorithm 1977

High complexity [EXPSPACE ’98], difficult proof.

Compression and word equations

Length minimal solution (length N): compressible to poly($\log N$). 2NEXPTIME [Plandowski and Rytter, 1998]

The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]

PSPACE [Plandowski 1999]

The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.

Solutions at most exponential?
<table>
<thead>
<tr>
<th>Makanin’s algorithm 1977</th>
</tr>
</thead>
<tbody>
<tr>
<td>High complexity [EXPSPACE ’98], difficult proof.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compression and word equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Length minimal solution (length N): compressible to $\text{poly}(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]</td>
</tr>
</tbody>
</table>
Makanin’s algorithm 1977
High complexity [EXPSPACE ’98], difficult proof.

Compression and word equations
- Length minimal solution (length N): compressible to poly($\log N$). \textbf{2NEXPTIME} [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. \textbf{NEXPTIME} [Plandowski 1999]
Makanin’s algorithm 1977

High complexity [EXPSPACE ’98], difficult proof.

Compression and word equations

- Length minimal solution (length N): compressible to poly$(\log N)$. \textbf{2NEXPTIME} [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. \textbf{NEXPTIME} [Plandowski 1999]
- \textbf{PSPACE} [Plandowski 1999]
Makanin’s algorithm 1977

High complexity [EXPSPACE ’98], difficult proof.

Compression and word equations

- Length minimal solution (length N): compressible to poly($\log N$). 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]
- PSPACE [Plandowski 1999]
- The same, but simpler. [J. 2013]
Makanin’s algorithm 1977

High complexity [EXPSPACE ’98], difficult proof.

Compression and word equations

- Length minimal solution (length N): compressible to poly(log N). 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]
- PSPACE [Plandowski 1999]
- The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?
Simple is good on its own.
Simple is good on its own.

Easier to generalize

- Regular constraints [Diekert, J., Plandowski]
- Involution ($aw = wa$) [Diekert, J., Plandowski]
- Free groups [Diekert, J., Plandowski]
- Generation of all solutions [J.]
 for free groups [Diekert, J., Plandowski]
- Partial commutation [Diekert, J., Kufleitner]
- All solutions are EDT0L language [Ciobanu, Diekert, Elder]
- Nondeterministic linear space = context sensitive language [J.]
- Twisted word equations (permutation of letters) [Diekert, Elder]
- Linear time for one variable [J.]
- Context unification (terms) [J.]
Intuition: recompression
▶ Think of new letters as nonterminals of a grammar
▶ We build a grammar for both strings, bottom-up.
▶ Everything is compressed in the same way!

Comparison with Plandowski’s approach
Top-down, creates many problems.
Intuition: recompression
▶ Think of new letters as nonterminals of a grammar
▶ We build a grammar for both strings, bottom-up.
▶ Everything is compressed in the same way!

Comparison with Plandowski’s approach
Top-down, creates many problems.
Equality and Compression of Strings

Intuition: recompresion

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!

Comparison with Pladowski's approach

top-down, creates many problems.
Equality and Compression of Strings

Intuition: recompression
▶ Think of new letters as nonterminals of a grammar
▶ We build a grammar for both strings, bottom-up.
▶ Everything is compressed in the same way!

Comparison with Plandowski’s approach
Top-down creates many problems.
Intuition: recompression

Think of new letters as nonterminals of a grammar

We build a grammar for both strings, bottom-up.

Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.
Intuition: recompression
▶ Think of new letters as nonterminals of a grammar
▶ We build a grammar for both strings, bottom-up.
▶ Everything is compressed in the same way!

Comparison with Plandowski’s approach
Top-down, creates many problems.
Equality and Compression of Strings

Intuition: recompression

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!
Intuition: recompression

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!

Comparison with Plandowski’s approach

Top-down, creates many problems.
For both solution words choose a pair (or letter) and compress it.
For both solution words choose a pair (or letter) and compress it.

while $U \notin \Sigma$ and $V \notin \Sigma$ do
 L ← letters from $S(U) = S(V)$
 for choose $ab \in L^2$ or $a \in L$ do
 replace all occurrences of ab in $S(U)$ and $S(V)$
 (or replace all occurrences of blocks of a)
For both solution words choose a pair (or letter) and compress it.

```
while U \notin \Sigma \text{ and } V \notin \Sigma \text{ do }
L \leftarrow \text{letters from } S(U) = S(V)
for \text{ choose } ab \in L^2 \text{ or } a \in L \text{ do }
    \text{replace all occurrences of } ab \text{ in } S(U) \text{ and } S(V)
    \text{(or replace all occurrences of blocks of } a\text{)}
```

How to do this for equations?
Working example

\(XbaYb = baaababbab\) has a solution \(S(X) = baaa, S(Y) = bba\)
Working example

$XbaYb = baaaababbab$ has a solution $S(X) = baaa$, $S(Y) = bba$

We want to replace pair ba by a new letter c. Then

$$XbaYb = baaaababbab \quad \text{for} \quad S(X) = baaa \quad S(Y) = bba$$
Working example

$X_{ba}Y_{b} = baaaababbab$ has a solution $S(X) = baaa$, $S(Y) = bba$

We want to replace pair ba by a new letter c. Then

$X_{ba}Y_{b} = baaaababbab$ for $S(X) = baaa$, $S(Y) = bba$

$X\ c\ Y_{b} = c\ aa\ c\ b\ c\ b$ for $S'(X) = caa$, $S'(Y) = bc$
Working example

\[XbaYb = baaaababbbab \] has a solution \(S(X) = baaa, S(Y) = bba \)

We want to replace pair \(ba \) by a new letter \(c \). Then

\[
\begin{align*}
XbaYb &= baaaababbbab \\
XcYb &= c\text{ }aa\text{ }c\text{ }b\text{ }c\text{ }b
\end{align*}
\]
for \(S(X) = baaa \) \(S(Y) = bba \)

And what about replacing \(ab \) by \(d \)?

\[
\begin{align*}
XbaYb &= baaaababbbab \\
&\text{for } S(X) = baaa \ S(Y) = bba
\end{align*}
\]
Working example

$XbaYb = baaababbab$ has a solution $S(X) = baaa$, $S(Y) = bba$

We want to replace pair ba by a new letter c. Then

$XbaYb = baacababbab$ for $S(X) = baaa$ $S(Y) = bba$

$XcYb = cacaacbca$ for $S'(X) = caa$ $S'(Y) = bc$

And what about replacing ab by d?

$XbaYb = baaababbbbab$ for $S(X) = baaa$ $S(Y) = bba$

There is a problem with ‘crossing pairs’. We will fix!
Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is

- **explicit** it comes from U or V;
- **implicit** comes solely from $S(X)$;
- **crossing** in other case.

ab is **crossing** if it has a crossing occurrence, non-crossing otherwise.
Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
- **explicit** it comes from U or V;
- **implicit** comes solely from $S(X)$;
- **crossing** in other case.

ab is **crossing** if it has a crossing occurrence, non-crossing otherwise.

$$X = \text{baa} \quad Y = \text{bbaabaaabbab} \quad S(X) = \text{baa}a \quad S(Y) = \text{bba}$$
Definition (Pair types)

Occurrence of \(ab \) in a solution word (so for a fixed solution) is

- **explicit** it comes from \(U \) or \(V \);
- **implicit** comes solely from \(S(X) \);
- **crossing** in other case.

\(ab \) is **crossing** if it has a crossing occurrence, non-crossing otherwise.

\[
X \quad baa \quad Y \quad b = baaabaabbab \\
S(X) = baaa, S(Y) = bba
\]

\[
baaa \quad baa \quad bba \quad b = baaabaabbab
\]

explicit

\[
baaa \quad baa \quad bba \quad b = baaabaabbab
\]

implicit

\[
baaa \quad baa \quad bba \quad b = baaabaabbab
\]

crossing

\[
baaa \quad baa \quad bba \quad b = baaabaabbab
\]
Compression of non-crossing pairs

PairComp \((a, b)\)

1: let \(c \in \Sigma\) be an unused letter
2: replace each explicit \(ab\) in \(U\) and \(V\) by \(c\)

Lemma
The \(\text{PairComp}(a, b)\) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has
sound if the new equation has a solution then the old one has
Compression of non-crossing pairs

PairComp(a, b)

1. let $c \in \Sigma$ be an unused letter
2. replace each explicit ab in U and V by c

Lemma

The PairComp(a, b) *properly compresses noncrossing pairs.*
Compression of non-crossing pairs

PairComp \((a, b)\)

1. let \(c \in \Sigma\) be an unused letter
2. replace each explicit \(ab\) in \(U\) and \(V\) by \(c\)

Lemma

The **PairComp** \((a, b)\) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has
sound if the new equation has a solution then the old one has
Correctness.

Complete

$S'(U')$ is $S(U)$ with every ab replaced; similarly $S'(V')$:

- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
- **crossing** there are none
Correctness.

Complete

\[S'(U') \text{ is } S(U) \text{ with every } ab \text{ replaced; similarly } S'(V') : \]

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

\[X \text{ baa Y b=}baaabaabbab \quad S(X) = baaa \quad S(Y) = bba \]

baaabaabbab = baaabaabbab
Correctness.

Complete

$S'(U')$ is $S(U)$ with every ab replaced; similarly $S'(V')$:

- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
- **crossing** there are none

\[
X \quad \text{baa} \quad Y \quad \text{b=baaabaabbab} \quad S(X) = \text{baaa} \quad S(Y) = \text{bba} \\
\text{baaabaabbab=baaabaabbab} \quad S'(X) = \text{caa} \quad S'(Y) = \text{bc}
\]
Correctness.

Complete

$S'(U')$ is $S(U)$ with every ab replaced; similarly $S'(V')$:
- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
 - **crossing** there are none

Sound

If the new equation is satisfiable: roll back the changes.
Correctness.

Complete

$S'(U')$ is $S(U)$ with every ab replaced; similarly $S'(V')$:

- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
- **crossing** there are none

Sound

If the new equation is satisfiable: roll back the changes.

\[
X \ baa \ Y \ b = baaabaabbab
\]
\[
c \ \text{aa} \ c \ \text{ab} \ c \ b = c \ \text{aa} \ c \ \text{ab} \ c \ b
\]
\[
X \ c \ a \ Y \ b = c \ \text{aa} \ c \ \text{ab} \ c \ b \quad S'(X) = c\text{aa} \\ S'(Y) = bc
\]
Correctness.

Complete

\(S'(U') \) is \(S(U) \) with every \(ab \) replaced; similarly \(S'(V') \):

- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
- **crossing** there are none

Sound

If the new equation is satisfiable: roll back the changes.

\[
X \ baa \ Y \ b = baaabaabbab \quad S(X) = baaa \quad S(Y) = bba
\]

\[
\begin{align*}
 c \ aa & \quad c \ ab \ c \ b = c \ aa \ c \ ab \ c \ b \\
 X \ c \ a \ Y \ b & = c \ aa \ c \ ab \ c \ b \\
 S'(X) & = caa \quad S'(Y) = bc
\end{align*}
\]
Correctness.

Complete

$S'(U')$ is $S(U)$ with every ab replaced; similarly $S'(V')$:

- **explicit pairs** replaced explicitly
- **implicit pairs** replaced implicitly (in the solution)
- **crossing** there are none

Sound

If the new equation is satisfiable: roll back the changes.

\[
X \ ba a \ Y \ b = baaaabaabbab \quad S(X) = baaa \quad S(Y) = bba \\
baaaabaabbab = baaaabaabbab \\
c aa \ c \ a b \ c \ b = c \ aa \ c \ ab \ c \ b \\
X \ c \ a \ Y \ b = c \ aa \ c \ ab \ c \ b \quad S'(X) = caa \quad S'(Y) = bc
\]
Dealing with crossing pairs

ab is a crossing pair
There is X such that $S(X) = bw$ and aX occurs in $U = V$ (or symmetric).
Dealing with crossing pairs

ab is a crossing pair

There is X such that $S(X) = bw$ and aX occurs in $U = V$ (or symmetric).

<table>
<thead>
<tr>
<th>Uncrossing(a, b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: for $X \in \mathcal{X}$ do</td>
</tr>
<tr>
<td>2: if first letter of $S(X)$ is b then</td>
</tr>
<tr>
<td>3: replace each occurrence of X by bX</td>
</tr>
<tr>
<td>4: if $S(X) = \epsilon$ then remove X from the equation</td>
</tr>
<tr>
<td>5: perform symmetrically for the last letter and a</td>
</tr>
</tbody>
</table>

Lemma

After uncrossing *ab* is no longer crossing. We can compress it.
Dealing with crossing pairs

ab is a crossing pair

There is X such that $S(X) = bw$ and aX occurs in $U = V$ (or symmetric).

Uncrossing (a, b)

1: **for** $X \in X$ **do**
2: **if** first letter of $S(X)$ is b **then**
3: replace each occurrence of X by bX ▷ Pop ▷ Change S accordingly
4: **if** $S(X) = \epsilon$ **then** remove X from the equation
5: ▷ perform symmetrically for the last letter and a

Lemma

After uncrossing ab *is no longer crossing.*
Dealing with crossing pairs

ab is a crossing pair

There is *X* such that *S(X) = bw* and *aX* occurs in *U = V* (or symmetric).

Uncrossing(*a, b*)

1: for *X ∈ X* do
2: if first letter of *S(X) is b* then
3: replace each occurrence of *X* by *bX* ▶ Pop ▶ Change *S* accordingly
4: if *S(X) = ε* then remove *X* from the equation
5: ▶ perform symmetrically for the last letter and *a*

Lemma

After uncrossing *ab* is no longer crossing.

We can compress it.
Uncrossing: example

Uncrossing ab

$X \ baa \ Y \ b = baaabaababbab \quad S(X) = baaa \quad S(Y) = bba$
Uncrossing ab

$X = \text{baa} \quad Y = \text{bbaababaabbab} \quad S(X) = \text{baaa} \quad S(Y) = \text{bba}$

$\text{baaabaaa bba b} = \text{baaabaabbab}$
Uncrossing ab

X baa Y b = baaabaaabbab $S(X) = baaa$ $S(Y) = bba$

baaabaa bba b = baaabaaabbab

$bXabaabYab = baaabaaabbab$ $S'(X) = aa$ $S'(Y) = b$
Uncrossing ab

$$X \ baa \ Y \ b = baaabaabbab \quad S(X) = baaa \quad S(Y) = bba$$

$$baaabaab \ bba \ b = baaabaabbab$$

$$baaabaab \ ba \ b = baaabaabbab$$

$$bX \ abaab \ Y \ ab = baaabaabbab \quad S'(X) = aa \quad S'(Y) = b$$
Definition (maximal block of a)

When a^ℓ occurs in $S(U) = S(V)$ and cannot be extended.
Maximal blocks

Definition (maximal block of a)

When a^ℓ occurs in $S(U) = S(V)$ and cannot be extended.

Equivalents of pairs.
Maximal blocks

Definition (maximal block of \(a\))

When \(a^\ell\) occurs in \(S(U) = S(V)\) and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter \(a\) is crossing (has a crossing block) if there is a crossing block of \(a\).
Maximal blocks

Definition (maximal block of a)

When a^ℓ occurs in $S(U) = S(V)$ and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter a is crossing (has a crossing block) if there is a crossing block of a.

\[
\begin{align*}
X \ baa \ Y \ b &= baabbaabbb \\
S(X) &= baab \\
S(Y) &= bb \\
baab \ baa \ bb \ b &= baabbaabbb
\end{align*}
\]
Maximal blocks

Definition (maximal block of \(a \))

When \(a^\ell \) occurs in \(S(U) = S(V) \) and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter \(a \) is crossing (has a crossing block) if there is a crossing block of \(a \).

\[
\begin{align*}
X \ baa \ Y \ b &= baabbaabbb \\
S(X) &= baab \quad S(Y) = bb \\
baab \ baa \ bb \ b &= baabbaabbb
\end{align*}
\]

Lemma (Length-minimal solutions)

If \(a^\ell \) is a maximal block in a length-minimal solution of \(U = V \) then \(\ell \leq 2^c|UV| \).
When a has no crossing block

1: for all maximal blocks a^ℓ of a and $\ell > 1$ do
2: let $a_\ell \in \Sigma$ be an unused letter
3: replace each explicit maximal a^ℓ in $U = V$ by a_ℓ
Blocks compression

When \(a \) has no crossing block

1. **for** all maximal blocks \(a^\ell \) of \(a \) and \(\ell > 1 \) do
2. let \(a^\ell \in \Sigma \) be an unused letter
3. replace each explicit maximal \(a^\ell \) in \(U = V \) by \(a^\ell \)

Lemma

The BlockComp\((a)\) properly compresses noncrossing blocks of \(a \).
Blocks compression

When \(a\) has no crossing block

1. **for** all maximal blocks \(a^\ell\) of \(a\) and \(\ell > 1\) **do**
2. let \(a_\ell \in \Sigma\) be an unused letter
3. replace each explicit maximal \(a^\ell\) in \(U = V\) by \(a_\ell\)

Lemma

The BlockComp\((a)\) properly compresses noncrossing blocks of \(a\).

\[
X \quad baaYbaaa = baabbaabbbbaaa \quad S(X) = baab \quad S(Y) = bb
\]
Blocks compression

When a has no crossing block

1. **for** all maximal blocks a^ℓ of a and $\ell > 1$ **do**
2. let $a_\ell \in \Sigma$ be an unused letter
3. replace each explicit maximal a^ℓ in $U = V$ by a_ℓ

Lemma

*The BlockComp(a) properly compresses noncrossing blocks of a.***

\[
X \overset{\text{baa}Y\text{baaa}}{=\text{baabbaabbbbaaa}} \quad S(X) = \text{baab} \quad S(Y) = \text{bb}
\]

\[
\text{baabbaabbbbaaa} = \overset{\text{baabbaabbbbaaa}}{=\text{baabbaabbbbaaa}}
\]
Blocks compression

When a has no crossing block

1: for all maximal blocks a^ℓ of a and $\ell > 1$ do
2: let $a^\ell \in \Sigma$ be an unused letter
3: replace each explicit maximal a^ℓ in $U = V$ by a^ℓ

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

$$X \ baaYbaaa = baabbaabbbaaaa \quad S(X) = baab \quad S(Y) = bb$$

$$baabbaabbbaaaa = baabbaabbbaaaa$$

$$X \ ba_2Yb \ a_3 = ba_2bbba_2bbb \ a_3 \quad S'(X) = ba_2b \quad S'(Y) = bb$$
When a has no crossing block

1: for all maximal blocks a^ℓ of a and $\ell > 1$ do
2: let $a_\ell \in \Sigma$ be an unused letter
3: replace each explicit maximal a^ℓ in $U = V$ by a_ℓ

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

\[
\begin{align*}
X \quad baaY baaa &= baabbaabbbbaaa \\
baabbbabbbbbaaa &= baabbbabbbbaaa \\
ba_2 bb a_2 bbb a_3 &= ba_2 bba_2 bbb a_3 \\
X \quad ba_2 Y b a_3 &= ba_2 bba_2 bbb a_3 \\
S(X) &= baab \quad S(Y) = bb \\
S'(X) &= ba_2 b \quad S'(Y) = bb
\end{align*}
\]
Crossing a-chains?

- Crossing a-chain: similar to crossing ab.

Lemma

After uncrossing a is no longer crossing.
Crossing a-chains?

- Crossing a-chain: similar to crossing ab.
- **pop whole a-prefix and a-suffix:**
 $S(X) = a^\ell_x w a^r_x$: change it to $S(X) = w$
Crossing a-chains?

- Crossing a-chain: similar to crossing ab.
- pop whole a-prefix and a-suffix:
 \[
 S(X) = a^{\ell_X}wa^{r_X} : \text{change it to } S(X) = w
 \]

1. \textbf{for } $X \in \mathcal{X}$ \textbf{do}
2. \quad replace each occurrence of X by $a^{\ell_X}Xa^{r_X}$ \hspace{1cm} $\triangleright \ell_X, r_X \geq 0$
3. \quad $\triangleright a^{\ell_X}$ and a^{r_X} are the a-prefix and suffix of $S(X)$
4. \quad \textbf{if } $S(X) = \epsilon$ \textbf{then}
5. \quad remove X from the equation
Crossing a-chains?

- Crossing a-chain: similar to crossing ab.
- pop whole a-prefix and a-suffix:
 \[S(X) = a^{\ell_X}w a^{r_X} : \text{change it to } S(X) = w \]

```
1: for $X \in \mathcal{X}$ do
2:   replace each occurrence of $X$ by $a^{\ell_X} X a^{r_X} \triangleright \ell_X, r_X \geq 0$
3:   \triangleright $a^{\ell_X}$ and $a^{r_X}$ are the $a$-prefix and suffix of $S(X)$
4: if $S(X) = \epsilon$ then
5:   remove $X$ from the equation
```

Lemma

After uncrossing a is no longer crossing.
Algorithm

while $U \notin \Sigma$ and $V \notin \Sigma$ do
 L ← letters from $U = V$
 choose a pair of letters or a block from L
 if it is crossing then
 Uncross it
 Compress it
If the new equation has a solution, then also the original one had.
If the new equation has a solution, then also the original one had.

Just roll back the changes.
If the new equation has a solution, then also the original one had.

Just roll back the changes.

\[X \ baa \ Y \ b = baaabaabbab \]
\[X \ c \ a \ Y \ b = c \ aa \ c \ ab \ c \ b \]
\[S(X) = caa \ S(Y) = bc \]
If the new equation has a solution, then also the original one had.

Just roll back the changes.

\[X \ baa \ Y \ b = baaabaabbab \]
\[c \ aa \ c \ ab \ c \ b = c \ aa \ c \ ab \ c \ b \]
\[X \ c \ a \ Y \ b = c \ aa \ c \ ab \ c \ b \]
\[S(X) = caa \ S(Y) = bc \]
If the new equation has a solution, then also the original one had.

Just roll back the changes.

\[\begin{align*}
X &= baa
Y &= baaaabaabbab \\
S(X) &= baaa
S(Y) &= bba \\
\end{align*} \]

\[\begin{align*}
X &= ca \quad Y = c
X &= ca
S(X) &= caa
S(Y) &= bc
\end{align*} \]
Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

\[
\begin{align*}
X & \quad baa \quad Y \quad b = baaabaabbab \\
baaaabaabbab & = baaabaabbab \\
S(X) & = baaa \quad S(Y) = bba
\end{align*}
\]

\[
\begin{align*}
\text{c aa} & \quad \text{c ab} \quad \text{c b} = \text{c aa} \quad \text{c ab} \quad \text{c b} \\
X & \quad \text{c a} \quad Y \quad b = \text{c aa} \quad \text{c ab} \quad \text{c b} \\
S(X) & = \text{caa} \quad S(Y) = \text{bc}
\end{align*}
\]
If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.
If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.

Make the choices according to the solution.
Completeness

If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?
Termination

We show that

- we stay in $O(n^2)$ space.
- After each operation the length-minimal solution shortens.
We show that

- we stay in $O(n^2)$ space.
- After each operation the length-minimal solution shortens.

So we terminate on positive instances.
We show that

- we stay in $O(n^2)$ space.
- After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word.
Strategy

Lemma

Compression of a non-crossing pair/block decreases equation’s size.

Proof.

Something is compressed in the equation.
Lemma

Compression of a non-crossing pair/block decreases equation’s size.

Proof.

Something is compressed in the equation.

Strategy

- If there is something non-crossing: compress it.
- If there are only crossing: choose one that minimises the equation.
Lemma (Fixed solution)

There are at most $2n$ different crossing pairs and blocks.
Lemma (Fixed solution)

There are at most $2n$ different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.
Lemma (Fixed solution)

There are at most \(2n\) different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most \(2n\) letters to the equation.
Lemma (Fixed solution)

There are at most $2n$ different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2n$ letters to the equation.

Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.
Lemma (Fixed solution)

There are at most $2n$ *different crossing pairs and blocks.*

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2n$ *letters to the equation.*

Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be $\leq 8n^2$.
Lemma (Fixed solution)

There are at most $2n$ different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2n$ letters to the equation.

Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be $\leq 8n^2$.

There are $m \leq 8n^2$ letters and $k \leq 2n$ different crossing blocks/pairs. Some covers $\geq m/k$ letters. Its compression removes $\geq m/2k$ letters and introduces $2n$ letters. We are left with at most

$$(1 - 1/2k) \cdot m + 2n \leq (1 - 1/4n) \cdot 8n^2 + 2n = 8n^2.$$
Conclusions and Open questions

Conclusions

» The representation can be more important than the combinatorics.

Open questions

» Are word equations in NP? (Are solutions at most exponential?)
» To which problems can we generalise this approach?
Conclusions and Open questions

Conclusions

- The representation can be more important than the combinatorics.

Open questions

- Are word equations in NP? (Are solutions at most exponential?)
- To which problems can we generalise this approach?
Regular constraints

For each variable: constraints of the form $X \in R, X \notin R'$
Regular constraints

For each variable: constraints of the form $X \in R, X \notin R'$

ρ: homomorphism from letters to transition matrices of NFAs extend also to variables: ρ_X, require $\rho(S(X)) = \rho_X$
Regular constraints

For each variable: constraints of the form $X \in R, X \notin R'$

ρ: homomorphism from letters to transition matrices of NFAs extend also to variables: ρ_X, require $\rho(S(X)) = \rho_X$

when w is replaced by c: $\rho(c) \leftarrow \rho(w)$
when X is replaced with wX: $\rho_X \leftarrow \rho'_X$ such that $\rho_X = \rho(w)\rho'_X$
when X is removed: check $\rho_X = \rho(\epsilon)$
(some extra tricks in the analysis)
Using parallel compression: length $\mathcal{O}(n) \implies \mathcal{O}(n \log n)$ bits

Using Huffman coding: linear-size (in terms of bits)
Space saving

Using parallel compression: length $\mathcal{O}(n) \implies \mathcal{O}(n \log n)$ bits

Using Huffman coding: linear-size (in terms of bits)
Even if input is Huffman-coded.