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Definition (Satisfiability of word equations)

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — 3* satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

aXbXYbbb=X abaaYbY S(X)=aa,S(Y)=>0bb
aaabaabbbbb=aaabaabbbbb

We extend Stoa §: (X UX)* — X*; identity on X.
S(U) is a solution word.

Lenght-minimal S: minimises |S(U)|.

Usually: no S(X) =€, ie S: X — X,
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Wrociwsh Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]

» The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

» PSPACE [Plandowski 1999]
» The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?
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Simple is good on its own.

Easier to generalize

» Regular constraints [Diekert, J., Plandowski]

» Involution (@w = w @) [Diekert, J., Plandowski]
» free groups [Diekert, J., Plandowski]

» generation of all solutions [J.]
for free groups [Diekert, J., Plandowski]

» partial commutation [Diekert, J., Kufleitner]

» all solutions are EDTOL language [Ciobanu, Diekert, Elder]

» nondeterministic linear space = context sensitive language [J.]
» twisted word equations (permutation of letters) [Diekert, Elder]
» linear time for one variable [J.]

> context unification (terms) [J.]
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az b d ¢ d a by d c e
a3 b d ¢ d a by d c e

Intuition: recompression

» Think of new letters as nonterminals of a grammar
» We build a grammar for both strings, bottom-up.
» Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.
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For both solution words choose a pair (or letter) and compress it.

while U ¢ ¥ and V ¢ ¥ do
L < letters from S(U) = S(V)
for choose ab € L? or a € L do
replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)

How to do this for equations?
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Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y') = bba
XcYb=caacbcb for S'(X)=caa S'(Y)=bc

And what about replacing ab by d?

XbaYb = baaababbab for S(X) = baaa S(Y') = bba

There is a problem with ‘crossing pairs’. We will fix!



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaa baa bba b = baaabaabbab explicit
baaa baa bba b = baaabaabbab implicit
baaa baa bba b = baaabaabbab crossing
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PairComp(a, b)

1: let ¢ € ¥ be an unused letter
2: replace each explicit ab in U and V by ¢

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has

sound if the new equation has a solution then the old one has
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explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none
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Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

X baa 'Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

caa cabcb=caacabch
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ab is a crossing pair

There is X such that S(X) = bw and a X occurs in U =V
(or symmetric).

Uncrossing(a, b)

1. for X € X do
D if first letter of S(X) is b then

3: replace each occurrence of X by bX > Pop
> Change S accordingly

4: if S(X) = e then remove X from the equation

5: > perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.
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Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab

b X abaabY ab=baaabaabbab S'(X)=aa S'"(Y)=5b
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Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab
baaabaab ba b=baaabaabbab
b X abaabY ab=baaabaabbab S'(X)=aa S'(Y)=b
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Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

» Block occurrence can be explicit, implicit or crossing.

» Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baaY b=baabbaabbb S(X)=baab S(Y)=0bb
baab baa bb b = baabbaabbb

Lemma (Length-minimal solutions)

If a* is a maximal block in a length-minimal solution of U =V then
g S 2C|UV|_
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When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa  S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa
b(lzbbagbbb as =ba2bba2bbb as

X bCLQYb as :bagbbagbbb as S/(X) == b(l,gb S,(Y) =bb
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» Crossing a-chain: similar to crossing ab.

» pop whole a-prefix and a-suffix:
S(X) = a"¥wa": change it to S(X) =w

1. for X € X do

2 replace each occurrence of X by a’X Xa"x >lx,rx >0
3 > a’* and a"X are the a-prefix and suffix of S(X)
4 if S(X) = e then

5 remove X from the equation

Lemma

After uncrossing a is no longer crossing.
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while U ¢ ¥ and V ¢ ¥ do
L < letters from U =V
choose a pair of letters or a block from L
if it is crossing then
Uncross it
Compress it
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If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

caa cabcb=caacabcecd

X caYb=caacabcd S(X)=rcaa S(Y) = bc
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If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?
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We show that
> we stay in O(n?) space.
» After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word. Ol
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Lemma
Compression of a non-crossing pair/block decreases equation’s size.

Proof.

Something is compressed in the equation. O

» If there is something non-crossing: compress it.

» If there are only crossing: choose one that minimises the
equation.
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Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be < 8n?.

There are m < 8n? letters and k < 2n different crossing blocks/pairs.
Some covers > m/k letters.

Its compression removes > m/2k letters and introduces 2n letters.
We are left with at most

(1—1/2k)-m+2n < (1 —1/4n)-8n? +2n = 8n? .
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Conclusions
» The representation can be more important than the
combinatorics.
Open questions

» Are word equations in NP? (Are solutions at most exponential?)

» To which problems can we generalise this approach?
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Regular constraints
For each variable: constraints of the foom X € R, X ¢ R’

p: homomorphism from letters to transition matrices of NFAs
extend also to variables: px, require p(S(X)) = px

when w is replaced by ¢: p(c) < p(w)

when X is replaced with wX: px < p'y such that px = p(w)p'y
when X i removed: check px = p(e)

(some extra tricks in the analysis)
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Wroctawski Space Saving

Using parallel compression: length O(n) = O(nlogn) bits

Using Huffman coding: linear-size (in terms of bits)
Even if input is Huffman-coded.



