|

g@@ Uniwersytet

Wroctawski

On Recompression for Word Equations

Artur Jez
Meeting on String Constraints and Applications (MOSCA)
07.05.2019




&\ Uniwersytet .
C Lo \\/ord Equations

Definition (Satisfiability of word equations)

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)



&\ Uniwersytet .
C Lo \\/ord Equations

Definition (Satisfiability of word equations)

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

aXbXYbbb=X abaaYbY S(X)=aa,S(Y)=>0bb



&\ Uniwersytet .
C Lo \\/ord Equations

Definition (Satisfiability of word equations)

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — ¥* satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

aXbXYbbb=X abaaYbY S(X)=aa,S(Y)=>0bb
aaabaabbbbb=aaabaabbbbb



&\ Uniwersytet .
C Lo \\/ord Equations

Definition (Satisfiability of word equations)

Given equation U =V, where U,V € (X U X)*.
Is there a substitution S : X — 3* satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

aXbXYbbb=X abaaYbY S(X)=aa,S(Y)=>0bb
aaabaabbbbb=aaabaabbbbb

We extend Stoa §: (X UX)* — X*; identity on X.
S(U) is a solution word.

Lenght-minimal S: minimises |S(U)|.

Usually: no S(X) =€, ie S: X — X,



22\ Uniwersytet : _
valcﬁ?;i\ésii Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.



Zp) Uniwersytet : :
58 Wrociwski Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations




Zp) Uniwersytet : :
58 Wrociwski Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]



Wrociwsh Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]

» The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]



Wrociwsh Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]

» The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

» PSPACE [Plandowski 1999]



Wrociwsh Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]

» The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

» PSPACE [Plandowski 1999]
» The same, but simpler. [J. 2013]



Wrociwsh Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE 98], difficult proof.

Compression and word equations

» Length minimal solution (length N): compressible to
poly(log N). 2NEXPTIME  [Plandowski and Rytter, 1998]

» The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

» PSPACE [Plandowski 1999]
» The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?



Uniwersytet
Wroctawski

Simple is good on its own.



Zia\ Uniwersytet
glﬁlg Wroctawski

Simple is good on its own.

Easier to generalize

» Regular constraints [Diekert, J., Plandowski]

» Involution (@w = w @) [Diekert, J., Plandowski]
» free groups [Diekert, J., Plandowski]

» generation of all solutions [J.]
for free groups [Diekert, J., Plandowski]

» partial commutation [Diekert, J., Kufleitner]

» all solutions are EDTOL language [Ciobanu, Diekert, Elder]

» nondeterministic linear space = context sensitive language [J.]
» twisted word equations (permutation of letters) [Diekert, Elder]
» linear time for one variable [J.]

> context unification (terms) [J.]



&ia\ Uniwersytet . . .
\X?rlc\;vce{a?v/sii Equality and Compression of Strings

aaababcababbabcecba

aaababcababbabcba



&ia\ Uniwersytet . . .
\X?rlc\;vce{a?v/sii Equality and Compression of Strings

aaababcababbabcba

aaababcababbabcba



&ia\ Uniwersytet . . .
\X?rlc\;vce{a?v/sii Equality and Compression of Strings

a3 babcababbabcba
a3 babcababbabcba



22\ Uniwersytet : : :
valgvcfgiy/sii Equality and Compression of Strings

a3z babcaba byabcecba

a3z babecaba byabeba



22\ Uniwersytet : : :
valgvcfgiy/sii Equality and Compression of Strings

as b d ¢ d a by d cba
a3z b d c d a by d cba



22\ Uniwersytet : : :
valgvcfgiy/sii Equality and Compression of Strings

az b d ¢ d a by d ¢ e
a3z b d c d a by d c e



Zia\ Uniwersytet
glﬁ]@ Wroctawski

Equality and Compression of Strings

az b d ¢ d a by d c e
a3 b d ¢ d a by d c e

Intuition: recompression

» Think of new letters as nonterminals of a grammar
» We build a grammar for both strings, bottom-up.
» Everything is compressed in the same way!



&y Uniwersytet : : :
vﬁ'&?éiisii Equality and Compression of Strings

az b d ¢ d a by d c e
a3 b d ¢ d a by d c e

Intuition: recompression

» Think of new letters as nonterminals of a grammar
» We build a grammar for both strings, bottom-up.
» Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.



A\ Uniwersytet . .
\X/roc’fawski Algorithm: idea

For both solution words choose a pair (or letter) and compress it.



s\ Uniwersytet ) .
5 Wrociawsi Algorithm: idea

For both solution words choose a pair (or letter) and compress it.

while U ¢ ¥ and V ¢ ¥ do
L < letters from S(U) = S(V)
for choose ab € L? or a € L do
replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)



s\ Uniwersytet ) .
5 Wrociawsi Algorithm: idea

For both solution words choose a pair (or letter) and compress it.

while U ¢ ¥ and V ¢ ¥ do
L < letters from S(U) = S(V)
for choose ab € L? or a € L do
replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)

How to do this for equations?



A\ Uniwersytet
Wroctawski Idea at work

Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba



Zia\ Uniwersytet
glﬁ]@ Wroctawski

Idea at work

Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y') = bba



Zia\ Uniwersytet
glﬁ]@ Wroctawski

Idea at work

Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y') = bba
XcYb=caacbcb for S'(X)=caa S'(Y)=bc



&\ Uniwersytet
«%‘@ Wroctawski Idea at work

Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y') = bba
XcYb=caacbcb for S'(X)=caa S'(Y)=bc

And what about replacing ab by d?

XbaYb = baaababbab for S(X) = baaa S(Y') = bba



&\ Uniwersytet
glﬁ‘@ Wroctawski Idea at work

Working example
XbaY'b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y') = bba
XcYb=caacbcb for S'(X)=caa S'(Y)=bc

And what about replacing ab by d?

XbaYb = baaababbab for S(X) = baaa S(Y') = bba

There is a problem with ‘crossing pairs’. We will fix!



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba



A\ Uniwersytet .
58 wrocows  EENS types

Definition (Pair types)

Occurrence of ab in a solution word (so for a fixed solution) is
explicit it comes from U or V;
implicit comes solely from S(X);
crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaa baa bba b = baaabaabbab explicit
baaa baa bba b = baaabaabbab implicit
baaa baa bba b = baaabaabbab crossing



,g‘l‘ Uniwersytet . ) /
LIRSl Compression of non-crossing pairs

PairComp(a, b)

1: let ¢ € ¥ be an unused letter
2: replace each explicit ab in U and V by ¢



,gl@ Uniwersytet . ) /
RISl Compression of non-crossing pairs

PairComp(a, b)

1: let ¢ € ¥ be an unused letter
2: replace each explicit ab in U and V by ¢

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.



,gl@ Uniwersytet . ) /
RISl Compression of non-crossing pairs

PairComp(a, b)

1: let ¢ € ¥ be an unused letter
2: replace each explicit ab in U and V by ¢

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has

sound if the new equation has a solution then the old one has



&\ Uniwersytet
glﬁ‘@ Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none



Zia\ Uniwersytet
glﬁ‘@ Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

X baa 'Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab



Zia\ Uniwersytet
glﬁ‘@ Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

X baa 'Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

caa cabcb=caacabcb
X caYb=caacabcb S'(X)=caaS(Y)=bc



&\ Uniwersytet
glﬁ‘@ Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.




Uniwersytet
Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

X baa Y b=baaabaabbab

caa cabcb=caacabcb
X caYb=caacabcb S'(X)=caaS'(Y)=0bc



Uniwersytet
Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

X baa 'Y b=baaabaabbab S(X) = baaa S(Y) = bba

caa cabcb=caacabcb
X caYb=caacabcb S'(X)=caaS'(Y)=0bc



Uniwersytet
Wroctawski

Complete
S"(U") is S(U) with every ab replaced; similarly S"(V’):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

X baa 'Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

caa cabcb=caacabch

X caYb=caacabcb S'(X)=caaS(Y)=bc



A\ Uniwersytet . . . .
VBl Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and a X occurs in U =V
(or symmetric).



A\ Uniwersytet . . . .
) wioclowsi Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and a X occurs in U =V
(or symmetric).

Uncrossing(a, b)

1. for X € X do
D if first letter of S(X) is b then

3: replace each occurrence of X by bX > Pop
> Change S accordingly
4: if S(X) = e then remove X from the equation

5: > perform symmetrically for the last letter and a



A\ Uniwersytet . . . .
52 Wrociowski Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and a X occurs in U =V
(or symmetric).

Uncrossing(a, b)

1. for X € X do
D if first letter of S(X) is b then

3: replace each occurrence of X by bX > Pop
> Change S accordingly

4: if S(X) = e then remove X from the equation

5: > perform symmetrically for the last letter and a

After uncrossing ab is no longer crossing.



A\ Uniwersytet . . . .
52 Wrociowski Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and a X occurs in U =V
(or symmetric).

Uncrossing(a, b)

1. for X € X do
D if first letter of S(X) is b then

3: replace each occurrence of X by bX > Pop
> Change S accordingly

4: if S(X) = e then remove X from the equation

5: > perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.



A\ Uniwersytet .
Wroctawski Uncrossmg: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba



A\ Uniwersytet .
Wroctawski Uncrossmg: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab



A\ Uniwersytet .
Wroctawski Uncrossmg: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab

b X abaabY ab=baaabaabbab S'(X)=aa S'"(Y)=5b



A\ Uniwersytet .
Wroctawski Uncrossmg: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab
baaabaab ba b=baaabaabbab
b X abaabY ab=baaabaabbab S'(X)=aa S'(Y)=b



A\ Uniwersytet .
el Maximal blocks

Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.



A\ Uniwersytet .
el Maximal blocks

Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.



A\ Uniwersytet .
) Wrocrawski Maximal blocks

Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

» Block occurrence can be explicit, implicit or crossing.

» Letter a is crossing (has a crossing block) if there is a crossing
block of a.



A\ Uniwersytet .
) Wrocrawski Maximal blocks

Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

» Block occurrence can be explicit, implicit or crossing.

» Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baaY b=baabbaabbb S(X)=baab S(Y)=0bb
baab baa bb b = baabbaabbb



A\ Uniwersytet .
) Wrocrawski Maximal blocks

Definition (maximal block of a)
When af occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

» Block occurrence can be explicit, implicit or crossing.

» Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baaY b=baabbaabbb S(X)=baab S(Y)=0bb
baab baa bb b = baabbaabbb

Lemma (Length-minimal solutions)

If a* is a maximal block in a length-minimal solution of U =V then
g S 2C|UV|_



&\ Uniwersytet .
Vel Blocks compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,



&\ Uniwersytet .
5 wocansi S compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.



&\ Uniwersytet .
5 wocansi S compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa  S(X) = baab S(Y) = bb



&\ Uniwersytet .
5 wocansi S compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa  S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa



&\ Uniwersytet .
5 wocansi S compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa  S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa

X bCLQYb as :bagbbagbbb as S/(X) == b(l,gb S,(Y) =bb



&\ Uniwersytet .
5 wocansi S compression

When a has no crossing block

1: for all maximal blocks a’ of @ and ¢ > 1 do
2: let ay € X3 be an unused letter
3: replace each explicit maximal a‘ in U = V by a,

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa  S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa
b(lzbbagbbb as =ba2bba2bbb as

X bCLQYb as :bagbbagbbb as S/(X) == b(l,gb S,(Y) =bb



A\ Uniwersytet . .
VMl Crossing a-chains?

» Crossing a-chain: similar to crossing ab.



A\ Uniwersytet . .
VMl Crossing a-chains?

» Crossing a-chain: similar to crossing ab.

» pop whole a-prefix and a-suffix:
S(X) = a"¥wa": change it to S(X) =w



&\ Uniwersytet . )
52 Wrociowski Crossing a-chains?

» Crossing a-chain: similar to crossing ab.

» pop whole a-prefix and a-suffix:
S(X) = a"¥wa": change it to S(X) =w

1. for X € X do

2 replace each occurrence of X by a’X Xa"x >lx,rx >0
3 > a’* and a"X are the a-prefix and suffix of S(X)
4 if S(X) = e then

5 remove X from the equation



&\ Uniwersytet . )
52 Wrociowski Crossing a-chains?

» Crossing a-chain: similar to crossing ab.

» pop whole a-prefix and a-suffix:
S(X) = a"¥wa": change it to S(X) =w

1. for X € X do

2 replace each occurrence of X by a’X Xa"x >lx,rx >0
3 > a’* and a"X are the a-prefix and suffix of S(X)
4 if S(X) = e then

5 remove X from the equation

Lemma

After uncrossing a is no longer crossing.



A\ Uniwersytet .
glﬁ‘@ Wroctawski Algorlthm

while U ¢ ¥ and V ¢ ¥ do
L < letters from U =V
choose a pair of letters or a block from L
if it is crossing then
Uncross it
Compress it



A\ Uniwersytet
Wroctawski

If the new equation has a solution, then also the original one had.



A\ Uniwersytet
Wroctawski

If the new equation has a solution, then also the original one had.

Just roll back the changes.



Zia\ Uniwersytet
Wroctawski

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab

X caYb=caacabcd S(X)=rcaa S(Y) = bc



Zia\ Uniwersytet
Wroctawski

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab

caa cabcb=caacabch
X caYb=caacabcd S(X)=rcaa S(Y) = bc



Zia\ Uniwersytet
glﬁ]@ Wroctawski

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba

caa cabcb=caacabch
X caYb=caacabcd S(X)=rcaa S(Y) = bc



Zia\ Uniwersytet
glﬁ]@ Wroctawski

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

caa cabcb=caacabcecd

X caYb=caacabcd S(X)=rcaa S(Y) = bc



A\ Uniwersytet
Bl Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.



&\ Uniwersytet
Bl Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.



&\ Uniwersytet
Bl Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?



&\ Uniwersytet . :
Vit Termination

We show that
> we stay in O(n?) space.

» After each operation the length-minimal solution shortens.



&\ Uniwersytet . :
Vit Termination

We show that
> we stay in O(n?) space.
» After each operation the length-minimal solution shortens.

So we terminate on positive instances.



&\ Uniwersytet . :
%Iﬁ‘g Wroctawski Termination

We show that
> we stay in O(n?) space.
» After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word. Ol



&\ Uniwersytet
Wroctawski St rategy

Compression of a non-crossing pair/block decreases equation’s size.

Something is compressed in the equation. O



&\ Uniwersytet
«%‘@ Wroctawski Strategy

Lemma
Compression of a non-crossing pair/block decreases equation’s size.

Proof.

Something is compressed in the equation. O

» If there is something non-crossing: compress it.

» If there are only crossing: choose one that minimises the
equation.



Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.




Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.




Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.




Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.



Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be < 8n?.



Lemma (Fixed solution)

There are at most 2n different crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be < 8n?.

There are m < 8n? letters and k < 2n different crossing blocks/pairs.
Some covers > m/k letters.

Its compression removes > m/2k letters and introduces 2n letters.
We are left with at most

(1—1/2k)-m+2n < (1 —1/4n)-8n? +2n = 8n? .



A\ Uniwersytet . )
\X/roc’fawski Conclusions and Open questions

Conclusions

» The representation can be more important than the
combinatorics.



A\ Uniwersytet . )
\X/roc’fawski Conclusions and Open questions

Conclusions
» The representation can be more important than the
combinatorics.
Open questions

» Are word equations in NP? (Are solutions at most exponential?)

» To which problems can we generalise this approach?



A\ Uniwersytet .
VBl Regular constraints

Regular constraints

For each variable: constraints of the form X € R, X ¢ R’



&\ Uniwersytet .
58) wrociawski Regular constraints

Regular constraints
For each variable: constraints of the form X € R, X ¢ R’

p: homomorphism from letters to transition matrices of NFAs
extend also to variables: px, require p(S(X)) = px



&\ Uniwersytet .
58) wrociawski Regular constraints

Regular constraints
For each variable: constraints of the foom X € R, X ¢ R’

p: homomorphism from letters to transition matrices of NFAs
extend also to variables: px, require p(S(X)) = px

when w is replaced by ¢: p(c) < p(w)

when X is replaced with wX: px < p'y such that px = p(w)p'y
when X i removed: check px = p(e)

(some extra tricks in the analysis)



Zia\ Uniwersytet
glﬁ]@ Wroctawski

Space saving

Using parallel compression: length O(n) = O(nlogn) bits

Using Huffman coding: linear-size (in terms of bits)



A\ Uniwersytet .
Wroctawski Space Saving

Using parallel compression: length O(n) = O(nlogn) bits

Using Huffman coding: linear-size (in terms of bits)
Even if input is Huffman-coded.



