

On Recompression for Word Equations

Artur Jeż
Meeting on String Constraints and Applications (MOSCA) 07.05.2019

Word Equations

Definition (Satisfiability of word equations)

Given equation $U=V$, where $U, V \in(\Sigma \cup \mathcal{X})^{*}$.
Is there a substitution $S: \mathcal{X} \rightarrow \Sigma^{*}$ satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

Word Equations

Definition (Satisfiability of word equations)

Given equation $U=V$, where $U, V \in(\Sigma \cup \mathcal{X})^{*}$.
Is there a substitution $S: \mathcal{X} \rightarrow \Sigma^{*}$ satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

$$
a X b X Y b b b=X a b a a Y b Y \quad S(X)=a a, S(Y)=b b
$$

Word Equations

Definition (Satisfiability of word equations)

Given equation $U=V$, where $U, V \in(\Sigma \cup \mathcal{X})^{*}$.
Is there a substitution $S: \mathcal{X} \rightarrow \Sigma^{*}$ satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

$$
\begin{aligned}
& a X b X Y b b b=X a b a a Y b Y \\
& a a a b a a b b b b b=a a a b a a b b b b b
\end{aligned} \quad S(X)=a a, S(Y)=b b
$$

Word Equations

Definition (Satisfiability of word equations)

Given equation $U=V$, where $U, V \in(\Sigma \cup \mathcal{X})^{*}$.
Is there a substitution $S: \mathcal{X} \rightarrow \Sigma^{*}$ satisfying the equation?
(Also more general: fintiely many solutions, representation of all, ...)

$$
\begin{aligned}
& a X b X Y b b b=X a b a a Y b Y \\
& a a a b a a b b b b b=a a a b a a b b b b b
\end{aligned} \quad S(X)=a a, S(Y)=b b
$$

We extend S to a $S:(\Sigma \cup \mathcal{X})^{*} \rightarrow \Sigma^{*}$; identity on Σ. $S(U)$ is a solution word.
Lenght-minimal S : minimises $|S(U)|$.
Usually: no $S(X)=\epsilon$, i.e. $S: \mathcal{X} \rightarrow \Sigma^{+}$.

Makanin's algorithm 1977
High complexity [EXPSPACE '98], difficult proof.

Makanin's algorithm 1977
High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

Makanin's algorithm 1977

High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

- Length minimal solution (length N): compressible to poly $(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

- Length minimal solution (length N): compressible to poly $(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

- Length minimal solution (length N): compressible to poly $(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]
- PSPACE [Plandowski 1999]

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

- Length minimal solution (length N): compressible to poly $(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]
- PSPACE [Plandowski 1999]
- The same, but simpler. [J. 2013]

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], difficult proof.
Compression and word equations

- Length minimal solution (length N): compressible to poly $(\log N)$. 2NEXPTIME [Plandowski and Rytter, 1998]
- The size N of the minimal solution is at most doubly exponential. NEXPTIME [Plandowski 1999]
- PSPACE [Plandowski 1999]
- The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP. Solutions at most exponential?

(稢殿 Uniwersytet
 Simplicity

Simple is good on its own.

Simplicity

Simple is good on its own.

Easier to generalize

- Regular constraints [Diekert, J., Plandowski]
- Involution $(\overline{a w}=\bar{w} \bar{a})$ [Diekert, J., Plandowski]
- free groups [Diekert, J., Plandowski]
- generation of all solutions [J.] for free groups [Diekert, J., Plandowski]
- partial commutation [Diekert, J., Kufleitner]
- all solutions are EDTOL language [Ciobanu, Diekert, Elder]
- nondeterministic linear space $=$ context sensitive language [J.]
- twisted word equations (permutation of letters) [Diekert, Elder]
- linear time for one variable [J.]
- context unification (terms) [J.]

Equality and Compression of Strings

$a a a b a b c a b a b b a b c b a$
 $a a a b a b c a b a b b a b c b a$

Equality and Compression of Strings

$a a a b a b c a b a b b a b c b a$ $a a a b a b c a b a b b a b c b a$

Equality and Compression of Strings

$a_{3} b a b c a b a b b a b c b a$ $a_{3} b a b c a b a b b a b c b a$

Equality and Compression of Strings

$a_{3} \quad b a b c a b a b_{2} a b c b a$ $a_{3} b a b c a b a b_{2} a b c b a$

Equality and Compression of Strings

$\begin{array}{lllllllllll}a_{3} & b & d & c & d & a & b_{2} & d & c & b & a\end{array}$

Equality and Compression of Strings

Equality and Compression of Strings

$\begin{array}{llllllllll}a_{3} & b & d & c & d & a & b_{2} & d & c & e\end{array}$ $\begin{array}{llllllllll}a_{3} & b & d & c & d & a & b_{2} & d & c & e\end{array}$

Intuition: recompression

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!

Equality and Compression of Strings

a_{3}
$\begin{array}{lllllll}a_{3} & b & d & c & d & a & b_{2}\end{array}$
d c
e

Intuition: recompression

- Think of new letters as nonterminals of a grammar
- We build a grammar for both strings, bottom-up.
- Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

For both solution words choose a pair (or letter) and compress it.

For both solution words choose a pair (or letter) and compress it.
while $U \notin \Sigma$ and $V \notin \Sigma$ do
$\mathrm{L} \leftarrow$ letters from $S(U)=S(V)$
for choose $a b \in \mathrm{~L}^{2}$ or $a \in \mathrm{~L}$ do
replace all occurrences of $a b$ in $S(U)$ and $S(V)$ (or replace all occurrences of blocks of a)

For both solution words choose a pair (or letter) and compress it.
while $U \notin \Sigma$ and $V \notin \Sigma$ do
$\mathrm{L} \leftarrow$ letters from $S(U)=S(V)$
for choose $a b \in \mathrm{~L}^{2}$ or $a \in \mathrm{~L}$ do
replace all occurrences of $a b$ in $S(U)$ and $S(V)$ (or replace all occurrences of blocks of a)

How to do this for equations?

Working example
$X b a Y b=b a a a b a b b a b$ has a solution $S(X)=b a a a, S(Y)=b b a$

Working example
$X b a Y b=b a a a b a b b a b$ has a solution $S(X)=b a a a, S(Y)=b b a$
We want to replace pair ba by a new letter c. Then

$$
X b a Y b=b a a a b a b b a b \quad \text { for } S(X)=b a a a S(Y)=b b a
$$

Working example
$X b a Y b=b a a a b a b b a b$ has a solution $S(X)=b a a a, S(Y)=b b a$
We want to replace pair ba by a new letter c. Then

$$
\begin{array}{ll}
X b a Y b=b a a a b a b b a b & \text { for } S(X)=b a a a \\
S(Y)=b b a \\
X c Y b=c a a c b c b & \text { for } S^{\prime}(X)=c a a \\
S^{\prime}(Y)=b c
\end{array}
$$

Working example

$X b a Y b=b a a a b a b b a b$ has a solution $S(X)=b a a a, S(Y)=b b a$
We want to replace pair ba by a new letter c. Then

$$
\begin{array}{ll}
X b a Y b=b a a a b a b b a b & \text { for } S(X)=b a a a \\
S(Y)=b b a \\
X c Y b=c a a c b c b & \text { for } S^{\prime}(X)=c a a \\
S^{\prime}(Y)=b c
\end{array}
$$

And what about replacing $a b$ by d ?

$$
X b a Y b=b a a a b a b b a b \quad \text { for } S(X)=b a a a S(Y)=b b a
$$

Working example

$X b a Y b=b a a a b a b b a b$ has a solution $S(X)=b a a a, S(Y)=b b a$
We want to replace pair $b a$ by a new letter c. Then

$$
\begin{array}{ll}
X b a Y b=b a a a b a b b a b & \text { for } S(X)=b a a a \\
S(Y)=b b a \\
X c Y b=c a a c b c b & \text { for } S^{\prime}(X)=c a a \\
S^{\prime}(Y)=b c
\end{array}
$$

And what about replacing $a b$ by d ?

$$
X b a Y b=b a a a b a b b a b \quad \text { for } S(X)=b a a a S(Y)=b b a
$$

There is a problem with 'crossing pairs'. We will fix!

Definition (Pair types)

Occurrence of $a b$ in a solution word (so for a fixed solution) is explicit it comes from U or V;
implicit comes solely from $S(X)$;
crossing in other case.
$a b$ is crossing if it has a crossing occurrence, non-crossing otherwise.

Definition (Pair types)

Occurrence of $a b$ in a solution word (so for a fixed solution) is explicit it comes from U or V;
implicit comes solely from $S(X)$;
crossing in other case.
$a b$ is crossing if it has a crossing occurrence, non-crossing otherwise.
$X \quad$ baa Y b $=$ baaabaabbab $\quad S(X)=b a a a S(Y)=b b a$

Definition (Pair types)

Occurrence of $a b$ in a solution word (so for a fixed solution) is explicit it comes from U or V;
implicit comes solely from $S(X)$;
crossing in other case.
$a b$ is crossing if it has a crossing occurrence, non-crossing otherwise.

$$
\begin{aligned}
X \text { baa Y b } & =\text { baaabaabbab } & S(X)=\text { baaa } S(Y)=b b a \\
\text { baaa baa bba } b & =\text { baaabaabbab } & \text { explicit } \\
\text { baaa baa bba } b & =\text { baaabaabbab } & \text { implicit } \\
\text { baaa baa bba } b & =\text { baaabaabbab } & \text { crossing }
\end{aligned}
$$

Compression of non-crossing pairs

PairComp (a, b)

1: let $c \in \Sigma$ be an unused letter
2: replace each explicit $a b$ in U and V by c

Compression of non-crossing pairs

PairComp (a, b)

1: let $c \in \Sigma$ be an unused letter
2: replace each explicit $a b$ in U and V by c

Lemma

The PairComp (a, b) properly compresses noncrossing pairs.

PairComp (a, b)

1: let $c \in \Sigma$ be an unused letter
2: replace each explicit $a b$ in U and V by c

Lemma

The PairComp (a, b) properly compresses noncrossing pairs.
complete if the old equation has a solution then the new one has sound if the new equation has a solution then the old one has

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none
X baa Y b=baaabaabbab $\quad S(X)=b a a a S(Y)=b b a$ baaabaabbab=baaabaabbab

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

$$
\begin{aligned}
& X \text { baa } Y \text { b=baaabaabbab } \quad S(X)=b a a a S(Y)=b b a \\
& \text { baaabaabbab=baaabaabbab } \\
& \text { caa } c a b c b=c a a c a b c b \\
& X \quad \text { c } a Y b=c a a c a b c b \quad S^{\prime}(X)=c a a S^{\prime}(Y)=b c
\end{aligned}
$$

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every ab replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

$$
\begin{aligned}
& X \quad b a a Y b=b a a a b a a b b a b \\
& c a a c a b c b=c a a c a b c b \\
& X \quad \text { ca } Y \text { } b=c a a c a b c b \quad S^{\prime}(X)=c a a S^{\prime}(Y)=b c
\end{aligned}
$$

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

$$
\begin{aligned}
& X \text { baa } Y \text { b=baaabaabbab } \quad S(X)=\text { baaa } S(Y)=b b a \\
& \text { caa } c a b c b=c a a c a b c b \\
& X \quad c a Y b=c a a c a b c b \quad S^{\prime}(X)=c a a S^{\prime}(Y)=b c
\end{aligned}
$$

Complete

$S^{\prime}\left(U^{\prime}\right)$ is $S(U)$ with every $a b$ replaced; similarly $S^{\prime}\left(V^{\prime}\right)$:
explicit pairs replaced explicitly
implicit pairs replaced implicitly (in the solution)
crossing there are none

Sound

If the new equation is satisfiable: roll back the changes.

$$
\left.\begin{array}{rl}
X & \text { baa } Y b \\
\text { baaabaabbab } & =b a a a a b a a b b a b b a b
\end{array} \quad S(X)=b a a a S(Y)=b b a\right)
$$

Dealing with crossing pairs

$a b$ is a crossing pair
There is X such that $S(X)=b w$ and $a X$ occurs in $U=V$ (or symmetric).
$a b$ is a crossing pair
There is X such that $S(X)=b w$ and $a X$ occurs in $U=V$ (or symmetric).

Uncrossing (a, b)

1: for $X \in \mathcal{X}$ do
2: if first letter of $S(X)$ is b then
3: \quad replace each occurrence of X by $b X$ \triangleright Change S accordingly
4: if $S(X)=\epsilon$ then remove X from the equation
5:
\triangleright perform symmetrically for the last letter and a
$a b$ is a crossing pair
There is X such that $S(X)=b w$ and $a X$ occurs in $U=V$ (or symmetric).

Uncrossing (a, b)

1: for $X \in \mathcal{X}$ do
2: if first letter of $S(X)$ is b then
3: \quad replace each occurrence of X by $b X$
\triangleright Change S accordingly
4: if $S(X)=\epsilon$ then remove X from the equation
5:
\triangleright perform symmetrically for the last letter and a

Lemma

After uncrossing $a b$ is no longer crossing.
$a b$ is a crossing pair
There is X such that $S(X)=b w$ and $a X$ occurs in $U=V$ (or symmetric).

Uncrossing (a, b)

1: for $X \in \mathcal{X}$ do
2: \quad if first letter of $S(X)$ is b then
3: \quad replace each occurrence of X by $b X$
\triangleright Change S accordingly
4: if $S(X)=\epsilon$ then remove X from the equation
5:
\triangleright perform symmetrically for the last letter and a

Lemma

After uncrossing $a b$ is no longer crossing.

We can compress it.

Uncrossing: example

Uncrossing $a b$

$$
X \text { baa } Y \text { b=baaabaabbab } \quad S(X)=b a a a S(Y)=b b a
$$

Uncrossing: example

Uncrossing $a b$

$$
\begin{gathered}
X \text { baa } Y \text { b=baaabaabbab } \quad S(X)=\text { baaa } S(Y)=b b a \\
\text { baaabaa bba b}=\text { baaabaabbab }
\end{gathered}
$$

Uncrossing: example

Uncrossing $a b$

$$
\begin{array}{rr}
X \text { baa } Y \text { b }=b a a a b a a b b a b & S(X)=b a a a S(Y)=b b a \\
b a a a b a a b b a b=b a a a b a a b b a b & \\
b X a b a a b Y a b=b a a a b a a b b a b & S^{\prime}(X)=a a S^{\prime}(Y)=b
\end{array}
$$

Uncrossing: example

Uncrossing $a b$

$$
\begin{array}{rrr}
X \text { baa } Y \text { b } & =\text { baaabaabbab } & S(X)=\text { baaa } S(Y)=b b a \\
\text { baaabaa bba b} & =\text { baaabaabbab } & \\
\text { baaabaab bab }=\text { baaabaabbab } & \\
\text { bX abaab } Y a b=b a a a b a a b b a b & S^{\prime}(X)=a a S^{\prime}(Y)=b
\end{array}
$$

Definition (maximal block of a)

When a^{ℓ} occurs in $S(U)=S(V)$ and cannot be extended.

Definition (maximal block of a)

When a^{ℓ} occurs in $S(U)=S(V)$ and cannot be extended.

Equivalents of pairs.

Definition (maximal block of a)

When a^{ℓ} occurs in $S(U)=S(V)$ and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter a is crossing (has a crossing block) if there is a crossing block of a.

Definition (maximal block of a)

When a^{ℓ} occurs in $S(U)=S(V)$ and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter a is crossing (has a crossing block) if there is a crossing block of a.

$$
\begin{aligned}
X \quad b a a Y \quad b & =b a a b b a a b b b \quad S(X)=b a a b S(Y)=b b \\
b a a b b a a b b b & =b a a b b a a b b b
\end{aligned}
$$

Definition (maximal block of a)

When a^{ℓ} occurs in $S(U)=S(V)$ and cannot be extended.

Equivalents of pairs.

- Block occurrence can be explicit, implicit or crossing.
- Letter a is crossing (has a crossing block) if there is a crossing block of a.

$$
\begin{aligned}
X \quad b a a Y b & =b a a b b a a b b b \\
b a a b b a a b b b & =b a a b b a a b b b
\end{aligned}
$$

Lemma (Length-minimal solutions)

If a^{ℓ} is a maximal block in a length-minimal solution of $U=V$ then $\ell \leq 2^{c|U V|}$.

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

Lemma

The BlockComp (a) properly compresses noncrossing blocks of a.

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

Lemma

The BlockComp (a) properly compresses noncrossing blocks of a.

$$
X \text { baaYbaaa=baabbaabbbaaa } \quad S(X)=b a a b S(Y)=b b
$$

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

Lemma

The BlockComp (a) properly compresses noncrossing blocks of a.

$$
\begin{array}{r}
X \quad \text { baaY } b a a a=b a a b b a a b b b a a a \\
b a a b b a a b b b a a a=b a a b b a a b b b a a a
\end{array}
$$

$$
S(X)=\operatorname{baab} S(Y)=b b
$$

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

Lemma

The BlockComp (a) properly compresses noncrossing blocks of a.

X baaYbaaa=baabbaabbbaaa

$$
S(X)=b a a b S(Y)=b b
$$

baabbaabbbaaa=baabbaabbbaaa

$$
X \quad b a_{2} Y b a_{3}=b a_{2} b b a_{2} b b b a_{3} \quad S^{\prime}(X)=b a_{2} b S^{\prime}(Y)=b b
$$

When a has no crossing block

1: for all maximal blocks a^{ℓ} of a and $\ell>1$ do
2: \quad let $a_{\ell} \in \Sigma$ be an unused letter
3: \quad replace each explicit maximal a^{ℓ} in $U=V$ by a_{ℓ}

Lemma

The BlockComp (a) properly compresses noncrossing blocks of a.

$$
\begin{array}{rlrl}
X \quad b a a Y b a a a & =b a a b b a a b b b a a a & S(X)=b a a b S(Y)=b b \\
b a a b b a a b b b a a a & =b a a b b a a b b b a a a \\
b a_{2} b b a_{2} b b b a_{3} & =b a_{2} b b a_{2} b b b a_{3} \\
X \quad b a_{2} Y b a_{3} & =b a_{2} b b a_{2} b b b a_{3} & S^{\prime}(X)=b a_{2} b S^{\prime}(Y)=b b
\end{array}
$$

- Crossing a-chain: similar to crossing $a b$.

Crossing a-chains?

- Crossing a-chain: similar to crossing $a b$.
- pop whole a-prefix and a-suffix: $S(X)=a^{\ell_{X}} w a^{r_{X}}$: change it to $S(X)=w$

Crossing a-chains?

- Crossing a-chain: similar to crossing $a b$.
- pop whole a-prefix and a-suffix: $S(X)=a^{\ell_{X}} w a^{r_{X}}$: change it to $S(X)=w$

1: for $X \in \mathcal{X}$ do
2: replace each occurrence of X by $a^{\ell_{X}} X a^{r_{X}}$ $\triangleright \ell_{X}, r_{X} \geq 0$
3: $\quad \triangleright a^{\ell_{X}}$ and $a^{r_{X}}$ are the a-prefix and suffix of $S(X)$
4: if $S(X)=\epsilon$ then
5: remove X from the equation

Crossing a-chains?

- Crossing a-chain: similar to crossing $a b$.
- pop whole a-prefix and a-suffix: $S(X)=a^{\ell_{X}} w a^{r_{X}}$: change it to $S(X)=w$

1: for $X \in \mathcal{X}$ do
2: replace each occurrence of X by $a^{\ell_{X}} X a^{r_{X}} \quad \triangleright \ell_{X}, r_{X} \geq 0$
3: $\quad \triangleright a^{\ell_{X}}$ and $a^{r_{X}}$ are the a-prefix and suffix of $S(X)$
4: if $S(X)=\epsilon$ then
5: remove X from the equation

Lemma

After uncrossing a is no longer crossing.

Algorithm

while $U \notin \Sigma$ and $V \notin \Sigma$ do
$\mathrm{L} \leftarrow$ letters from $U=V$ choose a pair of letters or a block from L if it is crossing then

Uncross it
Compress it

If the new equation has a solution, then also the original one had.

If the new equation has a solution, then also the original one had.
Just roll back the changes.

If the new equation has a solution, then also the original one had.
Just roll back the changes.

$$
X \text { baa } Y \text { b=baaabaabbab }
$$

$$
X \quad \text { c } a Y b=c a a c a b c b \quad S(X)=c a a S(Y)=b c
$$

Soundness

If the new equation has a solution, then also the original one had.
Just roll back the changes.

$$
\begin{aligned}
& X \quad b a a Y b=b a a a b a a b b a b \\
& c a a c a b c b=c a a c a b c b \\
& X \quad \text { ca } Y \text { b }=\text { c } a a c a b c b \quad S(X)=c a a S(Y)=b c
\end{aligned}
$$

If the new equation has a solution, then also the original one had.
Just roll back the changes.

$$
\begin{aligned}
& X \text { baa } Y \text { b=baaabaabbab } \quad S(X)=\text { baaa } S(Y)=b b a \\
& \text { caa } c a b c b=c a a c a b c b \\
& X \quad \text { c } a Y b=c a a c a b c b \quad S(X)=c a a S(Y)=b c
\end{aligned}
$$

If the new equation has a solution, then also the original one had.
Just roll back the changes.

$$
\begin{array}{rlrl}
X & b a a & Y & =b a a a b a a b b a b \\
\text { baaabaabbab } & =b a a a b a a b b a b & S(X)=b a a a S(Y)=b b a \\
c a a & \text { c } a b c b & =c a a c a b c b \\
X \quad \text { ca } Y b & =c a a c a b c b & S(X)=c a a S(Y)=b c
\end{array}
$$

Completeness

If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.

If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.

Make the choices according to the solution.

If the equation has the solution, then for some nondeterministic choices the new equation has a corresponding one.

Make the choices according to the solution.
What about termination?

We show that

- we stay in $\mathcal{O}\left(n^{2}\right)$ space.
- After each operation the length-minimal solution shortens.

We show that

- we stay in $\mathcal{O}\left(n^{2}\right)$ space.
- After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Termination

We show that

- we stay in $\mathcal{O}\left(n^{2}\right)$ space.
- After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word.

Strategy

Lemma

Compression of a non-crossing pair/block decreases equation's size.

Proof.

Something is compressed in the equation.

Strategy

Lemma

Compression of a non-crossing pair/block decreases equation's size.

Proof.

Something is compressed in the equation.

Strategy

- If there is something non-crossing: compress it.
- If there are only crossing: choose one that minimises the equation.

Lemma (Fixed solution)
There are at most $2 n$ different crossing pairs and blocks.

Lemma (Fixed solution)
There are at most $2 n$ different crossing pairs and blocks.
Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

There are at most $2 n$ different crossing pairs and blocks.
Each is associated with a side of an occurrence of a variable.
Lemma (Fixed solution)
Uncrossing introduces at most $2 n$ letters to the equation.

Lemma (Fixed solution)

There are at most $2 n$ different crossing pairs and blocks.
Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2 n$ letters to the equation.
Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.

Lemma (Fixed solution)

There are at most $2 n$ different crossing pairs and blocks.
Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2 n$ letters to the equation.
Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be $\leq 8 n^{2}$.

Lemma (Fixed solution)

There are at most $2 n$ different crossing pairs and blocks.
Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most $2 n$ letters to the equation.
Each variable pops left and right one letter for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be $\leq 8 n^{2}$.
There are $m \leq 8 n^{2}$ letters and $k \leq 2 n$ different crossing blocks/pairs. Some covers $\geq m / k$ letters.
Its compression removes $\geq m / 2 k$ letters and introduces $2 n$ letters. We are left with at most

$$
(1-1 / 2 k) \cdot m+2 n \leq(1-1 / 4 n) \cdot 8 n^{2}+2 n=8 n^{2} .
$$

Conclusions and Open questions

Conclusions

- The representation can be more important than the combinatorics.

Conclusions and Open questions

Conclusions

- The representation can be more important than the combinatorics.

Open questions

- Are word equations in NP? (Are solutions at most exponential?)
- To which problems can we generalise this approach?

Regular constraints

Regular constraints

For each variable: constraints of the form $X \in R, X \notin R^{\prime}$

Regular constraints

For each variable: constraints of the form $X \in R, X \notin R^{\prime}$
ρ : homomorphism from letters to transition matrices of NFAs extend also to variables: ρ_{X}, require $\rho(S(X))=\rho_{X}$

Regular constraints

Regular constraints

For each variable: constraints of the form $X \in R, X \notin R^{\prime}$
ρ : homomorphism from letters to transition matrices of NFAs extend also to variables: ρ_{X}, require $\rho(S(X))=\rho_{X}$
when w is replaced by $c: \rho(c) \leftarrow \rho(w)$ when X is replaced with $w X: \rho_{X} \leftarrow \rho_{X}^{\prime}$ such that $\rho_{X}=\rho(w) \rho_{X}^{\prime}$ when X i removed: check $\rho_{X}=\rho(\epsilon)$ (some extra tricks in the analysis)

Space saving

Using parallel compression: length $\mathcal{O}(n) \Longrightarrow \mathcal{O}(n \log n)$ bits
Using Huffman coding: linear-size (in terms of bits)

Space saving

Using parallel compression: length $\mathcal{O}(n) \Longrightarrow \mathcal{O}(n \log n)$ bits
Using Huffman coding: linear-size (in terms of bits) Even if input is Huffman-coded.

