
On Recompression for Word Equations

Artur Je»
Meeting on String Constraints and Applications (MOSCA)

07.05.2019

Word Equations

De�nition (Satis�ability of word equations)

Given equation U = V , where U, V ∈ (Σ ∪ X)∗.
Is there a substitution S : X → Σ∗ satisfying the equation?
(Also more general: �ntiely many solutions, representation of all, . . .)

aX bX Y bbb=X abaaY bY S(X) = aa, S(Y) = bb
aaabaabbbbb=aaabaabbbbb

We extend S to a S : (Σ ∪ X)∗ → Σ∗; identity on Σ.
S(U) is a solution word.
Lenght-minimal S: minimises |S(U)|.
Usually: no S(X) = ε, i.e. S : X → Σ+.

Word Equations

De�nition (Satis�ability of word equations)

Given equation U = V , where U, V ∈ (Σ ∪ X)∗.
Is there a substitution S : X → Σ∗ satisfying the equation?
(Also more general: �ntiely many solutions, representation of all, . . .)

aX bX Y bbb=X abaaY bY S(X) = aa, S(Y) = bb

aaabaabbbbb=aaabaabbbbb

We extend S to a S : (Σ ∪ X)∗ → Σ∗; identity on Σ.
S(U) is a solution word.
Lenght-minimal S: minimises |S(U)|.
Usually: no S(X) = ε, i.e. S : X → Σ+.

Word Equations

De�nition (Satis�ability of word equations)

Given equation U = V , where U, V ∈ (Σ ∪ X)∗.
Is there a substitution S : X → Σ∗ satisfying the equation?
(Also more general: �ntiely many solutions, representation of all, . . .)

aX bX Y bbb=X abaaY bY S(X) = aa, S(Y) = bb
aaabaabbbbb=aaabaabbbbb

We extend S to a S : (Σ ∪ X)∗ → Σ∗; identity on Σ.
S(U) is a solution word.
Lenght-minimal S: minimises |S(U)|.
Usually: no S(X) = ε, i.e. S : X → Σ+.

Word Equations

De�nition (Satis�ability of word equations)

Given equation U = V , where U, V ∈ (Σ ∪ X)∗.
Is there a substitution S : X → Σ∗ satisfying the equation?
(Also more general: �ntiely many solutions, representation of all, . . .)

aX bX Y bbb=X abaaY bY S(X) = aa, S(Y) = bb
aaabaabbbbb=aaabaabbbbb

We extend S to a S : (Σ ∪ X)∗ → Σ∗; identity on Σ.
S(U) is a solution word.
Lenght-minimal S: minimises |S(U)|.
Usually: no S(X) = ε, i.e. S : X → Σ+.

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Algorithms and Complexity

Makanin's algorithm 1977

High complexity [EXPSPACE '98], di�cult proof.

Compression and word equations

I Length minimal solution (length N): compressible to
poly(logN). 2NEXPTIME [Plandowski and Rytter, 1998]

I The size N of the minimal solution is at most doubly
exponential. NEXPTIME [Plandowski 1999]

I PSPACE [Plandowski 1999]

I The same, but simpler. [J. 2013]

Only NP-hard. And believed to be in NP.
Solutions at most exponential?

Simplicity

Simple is good on its own.

Easier to generalize

I Regular constraints [Diekert, J., Plandowski]

I Involution (aw = w a) [Diekert, J., Plandowski]

I free groups [Diekert, J., Plandowski]

I generation of all solutions [J.]
for free groups [Diekert, J., Plandowski]

I partial commutation [Diekert, J., Ku�eitner]

I all solutions are EDT0L language [Ciobanu, Diekert, Elder]

I nondeterministic linear space = context sensitive language [J.]

I twisted word equations (permutation of letters) [Diekert, Elder]

I linear time for one variable [J.]

I context uni�cation (terms) [J.]

Simplicity

Simple is good on its own.

Easier to generalize

I Regular constraints [Diekert, J., Plandowski]

I Involution (aw = w a) [Diekert, J., Plandowski]

I free groups [Diekert, J., Plandowski]

I generation of all solutions [J.]
for free groups [Diekert, J., Plandowski]

I partial commutation [Diekert, J., Ku�eitner]

I all solutions are EDT0L language [Ciobanu, Diekert, Elder]

I nondeterministic linear space = context sensitive language [J.]

I twisted word equations (permutation of letters) [Diekert, Elder]

I linear time for one variable [J.]

I context uni�cation (terms) [J.]

Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a aa a bb a bc a bb a b c ab

a aa a bb a bc a bb a b c ab

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3 a bb a bc a bb a b c ab

a3 a bb a bc a bb a b c ab

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3 a bb a bc a b2 a b c ab

a3 a bb a bc a b2 a b c ab

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3

d

b c a b2 c ab

a3 b c a b2 c ab

dd

d

d

d

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3

d

b c a b2 c e

a3 b c a b2 c e

dd

d

d

d

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3

d

b c a b2 c e

a3 b c a b2 c e

dd

d

d

d

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Equality and Compression of Strings

a3

d

b c a b2 c e

a3 b c a b2 c e

dd

d

d

d

Intuition: recompression

I Think of new letters as nonterminals of a grammar

I We build a grammar for both strings, bottom-up.

I Everything is compressed in the same way!

Comparison with Plandowski's approach

Top-down, creates many problems.

Algorithm: idea

For both solution words choose a pair (or letter) and compress it.

while U /∈ Σ and V /∈ Σ do

L← letters from S(U) = S(V)
for choose ab ∈ L2 or a ∈ L do

replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)

How to do this for equations?

Algorithm: idea

For both solution words choose a pair (or letter) and compress it.

while U /∈ Σ and V /∈ Σ do

L← letters from S(U) = S(V)
for choose ab ∈ L2 or a ∈ L do

replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)

How to do this for equations?

Algorithm: idea

For both solution words choose a pair (or letter) and compress it.

while U /∈ Σ and V /∈ Σ do

L← letters from S(U) = S(V)
for choose ab ∈ L2 or a ∈ L do

replace all occurrences of ab in S(U) and S(V)
(or replace all occurrences of blocks of a)

How to do this for equations?

Idea at work

Working example

XbaY b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y) = bba
X c Y b= c aa c b c b for S′(X) = caa S′(Y) = bc

And what about replacing ab by d?

XbaY b = baaababbab for S(X) = baaa S(Y) = bba

There is a problem with `crossing pairs'. We will �x!

Idea at work

Working example

XbaY b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y) = bba

X c Y b= c aa c b c b for S′(X) = caa S′(Y) = bc

And what about replacing ab by d?

XbaY b = baaababbab for S(X) = baaa S(Y) = bba

There is a problem with `crossing pairs'. We will �x!

Idea at work

Working example

XbaY b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y) = bba
X c Y b= c aa c b c b for S′(X) = caa S′(Y) = bc

And what about replacing ab by d?

XbaY b = baaababbab for S(X) = baaa S(Y) = bba

There is a problem with `crossing pairs'. We will �x!

Idea at work

Working example

XbaY b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y) = bba
X c Y b= c aa c b c b for S′(X) = caa S′(Y) = bc

And what about replacing ab by d?

XbaY b = baaababbab for S(X) = baaa S(Y) = bba

There is a problem with `crossing pairs'. We will �x!

Idea at work

Working example

XbaY b = baaababbab has a solution S(X) = baaa, S(Y) = bba

We want to replace pair ba by a new letter c. Then

XbaY b=baaababbab for S(X) = baaa S(Y) = bba
X c Y b= c aa c b c b for S′(X) = caa S′(Y) = bc

And what about replacing ab by d?

XbaY b = baaababbab for S(X) = baaa S(Y) = bba

There is a problem with `crossing pairs'. We will �x!

Pair types

De�nition (Pair types)

Occurrence of ab in a solution word (so for a �xed solution) is

explicit it comes from U or V ;

implicit comes solely from S(X);

crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b= baaabaabbab S(X) = baaa S(Y) = bba
baaa baa bba b= baaabaabbab explicit
baaa baa bba b= baaabaabbab implicit
baaa baa bba b= baaabaabbab crossing

Pair types

De�nition (Pair types)

Occurrence of ab in a solution word (so for a �xed solution) is

explicit it comes from U or V ;

implicit comes solely from S(X);

crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b= baaabaabbab S(X) = baaa S(Y) = bba

baaa baa bba b= baaabaabbab explicit
baaa baa bba b= baaabaabbab implicit
baaa baa bba b= baaabaabbab crossing

Pair types

De�nition (Pair types)

Occurrence of ab in a solution word (so for a �xed solution) is

explicit it comes from U or V ;

implicit comes solely from S(X);

crossing in other case.

ab is crossing if it has a crossing occurrence, non-crossing otherwise.

X baa Y b= baaabaabbab S(X) = baaa S(Y) = bba
baaa baa bba b= baaabaabbab explicit
baaa baa bba b= baaabaabbab implicit
baaa baa bba b= baaabaabbab crossing

Compression of non-crossing pairs

PairComp(a, b)

1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has

sound if the new equation has a solution then the old one has

Compression of non-crossing pairs

PairComp(a, b)

1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has

sound if the new equation has a solution then the old one has

Compression of non-crossing pairs

PairComp(a, b)

1: let c ∈ Σ be an unused letter
2: replace each explicit ab in U and V by c

Lemma

The PairComp(a, b) properly compresses noncrossing pairs.

complete if the old equation has a solution then the new one has

sound if the new equation has a solution then the old one has

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab

S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba

baaabaabbab=baaabaabbab

c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Correctness.

Complete

S′(U ′) is S(U) with every ab replaced; similarly S′(V ′):

explicit pairs replaced explicitly

implicit pairs replaced implicitly (in the solution)

crossing there are none

Sound

If the new equation is satis�able: roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S′(X) = caa S′(Y) = bc

Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and aX occurs in U = V
(or symmetric).

Uncrossing(a, b)

1: for X ∈ X do

2: if �rst letter of S(X) is b then

3: replace each occurrence of X by bX . Pop
. Change S accordingly

4: if S(X) = ε then remove X from the equation

5: . perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.

Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and aX occurs in U = V
(or symmetric).

Uncrossing(a, b)

1: for X ∈ X do

2: if �rst letter of S(X) is b then

3: replace each occurrence of X by bX . Pop
. Change S accordingly

4: if S(X) = ε then remove X from the equation

5: . perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.

Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and aX occurs in U = V
(or symmetric).

Uncrossing(a, b)

1: for X ∈ X do

2: if �rst letter of S(X) is b then

3: replace each occurrence of X by bX . Pop
. Change S accordingly

4: if S(X) = ε then remove X from the equation

5: . perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.

Dealing with crossing pairs

ab is a crossing pair

There is X such that S(X) = bw and aX occurs in U = V
(or symmetric).

Uncrossing(a, b)

1: for X ∈ X do

2: if �rst letter of S(X) is b then

3: replace each occurrence of X by bX . Pop
. Change S accordingly

4: if S(X) = ε then remove X from the equation

5: . perform symmetrically for the last letter and a

Lemma

After uncrossing ab is no longer crossing.

We can compress it.

Uncrossing: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba

baaabaa bba b=baaabaabbab
baaabaab bab=baaabaabbab
bXabaabY ab=baaabaabbab S′(X) = aa S′(Y) = b

Uncrossing: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab

baaabaab bab=baaabaabbab
bXabaabY ab=baaabaabbab S′(X) = aa S′(Y) = b

Uncrossing: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab

baaabaab bab=baaabaabbab

bXabaabY ab=baaabaabbab S′(X) = aa S′(Y) = b

Uncrossing: example

Uncrossing ab

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaa bba b=baaabaabbab
baaabaab bab=baaabaabbab
bXabaabY ab=baaabaabbab S′(X) = aa S′(Y) = b

Maximal blocks

De�nition (maximal block of a)

When a` occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

I Block occurrence can be explicit, implicit or crossing.

I Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baa Y b= baabbaabbb S(X) = baab S(Y) = bb
baab baa bb b= baabbaabbb

Lemma (Length-minimal solutions)

If a` is a maximal block in a length-minimal solution of U = V then
` ≤ 2c|UV |.

Maximal blocks

De�nition (maximal block of a)

When a` occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

I Block occurrence can be explicit, implicit or crossing.

I Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baa Y b= baabbaabbb S(X) = baab S(Y) = bb
baab baa bb b= baabbaabbb

Lemma (Length-minimal solutions)

If a` is a maximal block in a length-minimal solution of U = V then
` ≤ 2c|UV |.

Maximal blocks

De�nition (maximal block of a)

When a` occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

I Block occurrence can be explicit, implicit or crossing.

I Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baa Y b= baabbaabbb S(X) = baab S(Y) = bb
baab baa bb b= baabbaabbb

Lemma (Length-minimal solutions)

If a` is a maximal block in a length-minimal solution of U = V then
` ≤ 2c|UV |.

Maximal blocks

De�nition (maximal block of a)

When a` occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

I Block occurrence can be explicit, implicit or crossing.

I Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baa Y b= baabbaabbb S(X) = baab S(Y) = bb
baab baa bb b= baabbaabbb

Lemma (Length-minimal solutions)

If a` is a maximal block in a length-minimal solution of U = V then
` ≤ 2c|UV |.

Maximal blocks

De�nition (maximal block of a)

When a` occurs in S(U) = S(V) and cannot be extended.

Equivalents of pairs.

I Block occurrence can be explicit, implicit or crossing.

I Letter a is crossing (has a crossing block) if there is a crossing
block of a.

X baa Y b= baabbaabbb S(X) = baab S(Y) = bb
baab baa bb b= baabbaabbb

Lemma (Length-minimal solutions)

If a` is a maximal block in a length-minimal solution of U = V then
` ≤ 2c|UV |.

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb

baabbaabbbaaa=baabbaabbbaaa
ba2bba2bbb a3 =ba2bba2bbb a3
X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S

′(Y) = bb

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb

baabbaabbbaaa=baabbaabbbaaa
ba2bba2bbb a3 =ba2bba2bbb a3
X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S

′(Y) = bb

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb

baabbaabbbaaa=baabbaabbbaaa
ba2bba2bbb a3 =ba2bba2bbb a3
X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S

′(Y) = bb

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa

ba2bba2bbb a3 =ba2bba2bbb a3
X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S

′(Y) = bb

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa

ba2bba2bbb a3 =ba2bba2bbb a3

X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S
′(Y) = bb

Blocks compression

When a has no crossing block

1: for all maximal blocks a` of a and ` > 1 do

2: let a` ∈ Σ be an unused letter
3: replace each explicit maximal a` in U = V by a`

Lemma

The BlockComp(a) properly compresses noncrossing blocks of a.

X baaY baaa=baabbaabbbaaa S(X) = baab S(Y) = bb
baabbaabbbaaa=baabbaabbbaaa
ba2bba2bbb a3 =ba2bba2bbb a3
X ba2Y b a3 =ba2bba2bbb a3 S′(X) = ba2b S

′(Y) = bb

Crossing a-chains?

I Crossing a-chain: similar to crossing ab.

I pop whole a-pre�x and a-su�x:
S(X) = a`XwarX : change it to S(X) = w

1: for X ∈ X do

2: replace each occurrence of X by a`XXarX . `X , rX ≥ 0
3: . a`X and arX are the a-pre�x and su�x of S(X)
4: if S(X) = ε then
5: remove X from the equation

Lemma

After uncrossing a is no longer crossing.

Crossing a-chains?

I Crossing a-chain: similar to crossing ab.

I pop whole a-pre�x and a-su�x:
S(X) = a`XwarX : change it to S(X) = w

1: for X ∈ X do

2: replace each occurrence of X by a`XXarX . `X , rX ≥ 0
3: . a`X and arX are the a-pre�x and su�x of S(X)
4: if S(X) = ε then
5: remove X from the equation

Lemma

After uncrossing a is no longer crossing.

Crossing a-chains?

I Crossing a-chain: similar to crossing ab.

I pop whole a-pre�x and a-su�x:
S(X) = a`XwarX : change it to S(X) = w

1: for X ∈ X do

2: replace each occurrence of X by a`XXarX . `X , rX ≥ 0
3: . a`X and arX are the a-pre�x and su�x of S(X)
4: if S(X) = ε then
5: remove X from the equation

Lemma

After uncrossing a is no longer crossing.

Crossing a-chains?

I Crossing a-chain: similar to crossing ab.

I pop whole a-pre�x and a-su�x:
S(X) = a`XwarX : change it to S(X) = w

1: for X ∈ X do

2: replace each occurrence of X by a`XXarX . `X , rX ≥ 0
3: . a`X and arX are the a-pre�x and su�x of S(X)
4: if S(X) = ε then
5: remove X from the equation

Lemma

After uncrossing a is no longer crossing.

Algorithm

while U /∈ Σ and V /∈ Σ do

L← letters from U = V
choose a pair of letters or a block from L
if it is crossing then

Uncross it
Compress it

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab

S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b

X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab

S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab

c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba

baaabaabbab=baaabaabbab

c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Soundness

If the new equation has a solution, then also the original one had.

Just roll back the changes.

X baa Y b=baaabaabbab S(X) = baaa S(Y) = bba
baaabaabbab=baaabaabbab
c aa c ab c b= c aa c ab c b
X c a Y b= c aa c ab c b S(X) = caa S(Y) = bc

Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?

Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?

Completeness

If the equation has the solution, then for some nondeterministic
choices the new equation has a corresponding one.

Make the choices according to the solution.

What about termination?

Termination

We show that

I we stay in O(n2) space.

I After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word.

Termination

We show that

I we stay in O(n2) space.

I After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word.

Termination

We show that

I we stay in O(n2) space.

I After each operation the length-minimal solution shortens.

So we terminate on positive instances.

Lemma

Each compression decreases the length of the length-minimal solution.

Proof.

We perform the compression on the solution word.

Strategy

Lemma

Compression of a non-crossing pair/block decreases equation's size.

Proof.

Something is compressed in the equation.

Strategy

I If there is something non-crossing: compress it.

I If there are only crossing: choose one that minimises the
equation.

Strategy

Lemma

Compression of a non-crossing pair/block decreases equation's size.

Proof.

Something is compressed in the equation.

Strategy

I If there is something non-crossing: compress it.

I If there are only crossing: choose one that minimises the
equation.

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Lemma (Fixed solution)

There are at most 2n di�erent crossing pairs and blocks.

Each is associated with a side of an occurrence of a variable.

Lemma (Fixed solution)

Uncrossing introduces at most 2n letters to the equation.

Each variable pops left and right one letter
for a-chains: it is compressed immediately afterwards.

Lemma

There is always some choice to be ≤ 8n2.

There are m ≤ 8n2 letters and k ≤ 2n di�erent crossing blocks/pairs.
Some covers ≥ m/k letters.
Its compression removes ≥ m/2k letters and introduces 2n letters.
We are left with at most

(1− 1/2k) ·m+ 2n ≤ (1− 1/4n) · 8n2 + 2n = 8n2 .

Conclusions and Open questions

Conclusions

I The representation can be more important than the
combinatorics.

Open questions

I Are word equations in NP? (Are solutions at most exponential?)

I To which problems can we generalise this approach?

Conclusions and Open questions

Conclusions

I The representation can be more important than the
combinatorics.

Open questions

I Are word equations in NP? (Are solutions at most exponential?)

I To which problems can we generalise this approach?

Regular constraints

Regular constraints

For each variable: constraints of the form X ∈ R,X /∈ R′

ρ: homomorphism from letters to transition matrices of NFAs
extend also to variables: ρX , require ρ(S(X)) = ρX

when w is replaced by c: ρ(c)← ρ(w)
when X is replaced with wX: ρX ← ρ′X such that ρX = ρ(w)ρ′X
when X i removed: check ρX = ρ(ε)
(some extra tricks in the analysis)

Regular constraints

Regular constraints

For each variable: constraints of the form X ∈ R,X /∈ R′

ρ: homomorphism from letters to transition matrices of NFAs
extend also to variables: ρX , require ρ(S(X)) = ρX

when w is replaced by c: ρ(c)← ρ(w)
when X is replaced with wX: ρX ← ρ′X such that ρX = ρ(w)ρ′X
when X i removed: check ρX = ρ(ε)
(some extra tricks in the analysis)

Regular constraints

Regular constraints

For each variable: constraints of the form X ∈ R,X /∈ R′

ρ: homomorphism from letters to transition matrices of NFAs
extend also to variables: ρX , require ρ(S(X)) = ρX

when w is replaced by c: ρ(c)← ρ(w)
when X is replaced with wX: ρX ← ρ′X such that ρX = ρ(w)ρ′X
when X i removed: check ρX = ρ(ε)
(some extra tricks in the analysis)

Space saving

Using parallel compression: length O(n) =⇒ O(n log n) bits

Using Hu�man coding: linear-size (in terms of bits)

Even if input is Hu�man-coded.

Space saving

Using parallel compression: length O(n) =⇒ O(n log n) bits

Using Hu�man coding: linear-size (in terms of bits)
Even if input is Hu�man-coded.

