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Part I. A brief history of word equations

Early “Algebraic” undecidabilty results
Dehn (1912): The word problem of orientable surface groups is decidable (in linear time).

G = 〈a1, b1, . . . , ag , bg 〉 /[a1, b1] · · · [ag , bg ] = 1.

Early “Algebraic” undecidabilty results

Post Correspondence Problem.
Given a finite set A and two homomorphisms f : A+ → {0, 1}+ and
g : A+ → {0, 1}+. Is there a word w ∈ A+ such that f (w) = g(w)?

Word Problem in a finitely presented monoid (Post 1947).
One can construct a finitely presented monoid M (generated by two elements a, b)
such that the following problem is undecidable: Given u, v ∈ {0, 1}+ , do we have
u = v in the monoid M.
The corresponding problem for finitely presented groups was shown to be undecidable
by Novitkov and Boone in the late 1950s, only. Proofs are much harder.

Logic: Gödel versus Tarski: The elementary theory over N is undecidable (Gödel 1931),
but decidable over reals R (Tarski 1948).



Word equations in monoids with a decidable word problem

Let M be a finitely generated semigroup (monoid, group) with generating set A and Ω be
a set of variables.
A system of word equations over M is a set

S = {Ui=Vi | Ui ,Vi ∈ (A ∪ Ω)∗, i ∈ S } .

A solution is given by a substitution X 7→ σ(X ) ∈ M for variables X such that
σ(Ui ) = σ(Vi ) becomes an identity in M for all i ∈ S .

WordEquation

On input M and S decide whether S has a solution σ.

Special instances:

A single equation U=V .

Linear Diophantine equations over Nk or Zk .

Equations over free monoids and free groups.



WordEquation is a special instance of Hilbert10

Matiyasevich 1970: Hilbert10 is undecidable (based on Davis, Putnam, Robinson)

Makanin 1977: WordEquation in free monoids is decidable.

Makanin 1982/84: WordEquation in free groups is decidable.

Matiyasevich 1996 and D., Matiyasevich, Muscholl 1997: WordEquation in free
partially commutative monoids (= trace monoids) is decidable.

Plandowski 1999: WordEquation is in PSPACE.

D., Hagenah, Gutiérrez 2001: WordEquation in free groups with rational
constraints is PSPACE complete.

D., Muscholl 2002: WordEquation in free partially commutative groups (=
RAAGs) with normalized regular constraints is in PSPACE.

Lohrey-Sénizergues 2006 and Dahmani-Guirardel 2010: WordEquation in
f.g. virtually free (= context-free) groups is decidable. No concrete complexity bound!

Jeż 2013: WordEquation ∈ NSPACE(n log n) with a proof from TheBook!

D., Elder 2017: WordEquation in virtually free groups is in PSPACE.



Hilbert Tenth Problem

Hilbert’s address at the International Congress of Mathematicians 1900 in Paris:

Eine diophantische Gleichung mit irgendwelchen Unbekannten und mit ganzen
rationalen Zahlenkoeffizienten sei vorgelegt: Man soll ein Verfahren angeben,
nach welchem sich mittels einer endlichen Anzahl von Operationen entscheiden
läßt, ob die Gleichung in ganzen Zahlen lösbar ist.

That is: Hilbert asked whether the following H10 set is decidable?

Hilbert10 = {P(X1, . . . ,Xn) ∈ Z[X1, . . . ,Xn] | ∃x1, . . . , xn ∈ Z : P(x1, . . . , xn) = 0 }



Word equations and Diophantine problems

SL(2,N) =

{(
a b
c d

) ∣∣∣∣ a, b, c , d ∈ N ∧ ad − bc = 1

}
.

Let U =

(
1 1
0 1

)
and L =

(
1 0
1 1

)
.

Fact: SL(2,N) = {U, L}∗ is a free monoid with 2 generators1

1. Karp-Rabin used this fact 1987 for fast randomized pattern matching.



From WordEquation to Hilbert10

Translation of an equation Z = XY with variables X ,Y ,Z over {U, L}∗ into a

Diophantine problem:

(
Z1 Z2

Z3 Z4

)
=

(
X1 X2

X3 Y4

)(
Y1 Y2

Y3 Y4

)
.

Z1 = X1Y1 + X2Y3

Z2 = X1Y2 + X2Y4, Z3 = . . . , Z4 = . . .

1 = X1X4 − X2X3, 1 = Y1Y4 − Y2Y3, 1 = Z1Z4 − Z2Z3,

Xi = A2
i + B2

i + C 2
i + D2

i , etc by Lagrange

Direct Consequence.
WordEquation in free monoids ≤ WordEquation in SL(2,Z) ≤ Hilbert10.
Since SL(2,Z) contains a free subgroup of rank 2, we also see:
WordEquation in free groups ≤ WordEquation in SL(2,Z) with constraints.



Existential theory with Contraints

Regular Constraints.

Atomic formulas: U=V with U,V ∈ (A ∪ Ω)∗.

Predicates X ∈ R with X ∈ Ω and R ∈ REG(A).

Boolean connectives: ∧, ∨, ¬ etc.

{∃X1, . . . ,∃Xk : Φ(X1, . . . ,Xk) = true}

Schulz (1990, LNCS 572)

The existential theory of word equations with regular constraints is decidable.

His proof used Makanin and the fact that REG(A) = REC(A).
For any monoid: L ∈ M is recognizable (that is in REC(M)) if there is a homomorphism
h : M → N such that |N| <∞ and h−1(h(L)) = L.



From word equations with length predicates

Proposition [Durnev (1974), Büchi-Senger (1988)]

Let A = { a, b }. The existential theory (of equations) inA∗ together with length
predicates |X |a = |Y |a and |X |b = |Y |b is undecidable.

Proof

Reduction of Hilbert10.

Open Problem

What about the existential theory (of equations) in A∗ together with a single length
predicate: |X | = |Y |?



Part II.

String graphs



Concurrency: How to model it algebraically? Trace equations

There are interleaving models: ab = ba; and Petri nets (they claim for true concurrency)
(a, b) ∈ I , then a and b can be executed in parallel.

Algebraic simplification.

Given a finite undirected graph (A, I ), then the trace monoid is the free monoid V ∗ with
defining relations ab = ba for all ab = ba. The notation I refers to independence.

M(A, I ) = A∗/ { ab = ba | ab = ba } .

Traces describe runs where the execution of independent events can be done in parallel.
Hence: in any order.
Solving trace equations is more demanding than solving word equations, and requires to
study equations with regular constraints to express independence.
Solving trace equations turned out be crucial for solving the string graph embedding
problem of surfaces.
This is a surprising application as far as possible from concurrency?



String graph recognition

String graphs
Vertices are curves in the plane and edges may cross..
The notion of string graph appeared 1966 in a paper by Sinden on circuit layout.
Graham (1976): Given an abstract graph. Can we decide whether it is a string graph.

Graph Realization as an intersection graph of curves
a b

c d
a

b

c

d

Proposition (Kratochv́ıl, 1991)

The string graph recognition problem is NP-hard.



String graph recognition

Weak realization of a string graph
The String Graph Recognition Problem is reducible to the Weak Realization Problem.

Graph Weak realization as an intersection graph of curves.
a b

c d
a

b

c

d

Let S be a compact orientable surface with boundary, for example S = [0, 1] × [0, 1] ⊆ R2

where the position of the vertices are fixed: V ⊆ S .
◮ Given a graph G = (V ,E ) and a relation R ⊆ E × E .
◮ Can we embed G such that if e, f cross, then (e, f ) ∈ R?

In the picture: (b, c) ∈ E but b and c do not intersect.



String graph recognition

String graphs and word equations

Theorem (Schaefer, Sedgwick, Štefankovič, STOC 2002)

Recognizing string graphs in the plane is NP-complete.

Proof uses a reduction to word equations with given lengths for the solution.

Theorem (Schaefer, Sedgwick, Štefankovič, JCSS 2004)

Recognizing string graphs on any compact surface is in PSPACE.

The proof uses a reduction to quadratic trace equations with involution. Quadratic trace
equations with involution are easy to solve in PSPACE by D., Kufleitner (DLT 2002).

Trace equations are word equations modulo some partial commutation. We need an
involution, which corresponds to the orientation of faces and edges.

a1 · · · an = an · · · a1

This means: Read words (or traces) from right-to-left



String graph recognition

From string graphs to trace equations: Proof ingredients
1. Triangulate a big triangle, such that vertices are inside distinguished small triangles.
2. At most one vertex is present in this triangle.
3. The strings are leaving in some order via some edge.
4. All crossings between strings are inside triangles without vertices.

A B

C zAB = ε

zBC = b

zCA = cda



String graph recognition

Equations modulo partial commutation

A B

C

D

d

a

a
c

b

d

db

aa c

aac

bcddaab

da

a ca

caa

aad
daac

aac = aa c

bcd = c db

daab = db aa

caa = ca a

aad = a da

daac = da ca

aac = caa

(a, b) ∈ I

(b, c) ∈ I



String graph recognition

From string graphs to trace equations

X

Y

A B

C

D

d

a

a
c

b

d

xC

xA xB

zAB

zBCzCA

yD

yA yB

zBA

zAD zDB

zAB = xA xB

zBC = xB xC

zCA = xC xA

zBA = yB yA

zAD = yA yD

zDB = yD yB

zAB = zBA



Part III. Solving quadratic equations

Matiyasevich 1968: QuadraticWordEquation is NSPACE(n).

A quadratic word equation is a word equation where every variable appears at most twice.

aXaaXYbZ = Y is quadratic.

aXaaXX = YY is not quadratic because X appears three times.

Matiyasevich’s algorithm for solving quadratic equations makes deterministic choices and
nondeterministic guesses which transform the equation without making it longer.
Soundness: The algorithm never transforms any unsolvable equation into a solvable one.
Completeness: If the equation is solvable, then there is a sequence of (non-)deterministic
choices to a trivially solvable equation.



Example

X X Y Z = ba Y a Z baa
baa baa aba a = ba aba a a baa

1 |X | ≤ 1 is impossible. (Why?)

2 Rewrite X = baX and obtain baXbaXYZ = baYaZbaa. Length increases by 4.

3 Cancel ba on the left and obtain XbaXYZ = YaZbaa.
Length decreases by 4. Thus, we are back at the original length!

4 Guess X ≤ Y and rewrite Y = XY .

5 Obtain XbaXXYZ = XYaZbaa. Length increases by 2.

6 Cancel X on the left and obtain baXXYZ = YaZbaa.
Length decreases by 2. Thus, we are back at the original length!

7 Guess Y = ba. Obtain baXXbaZ = baaZbaa.

8 Cancel ba the left and obtain the shorter equation XXbaZ = aZbaa.

9 This forces X = a and Z = a which is a solution.



Solving quadratic systems: High level desciption

1. Replace some (or none) variables X by the empty word.

2. Hence: Search for solution with X 6= 1, only.

3. We may assume that the first equation is either of the form

X · · · = a · · · with X ∈ Ω, a ∈ A

or X · · · = Y · · · with X ∈ Ω, Y ∈ Ω, X 6= Y .

Moreover, |X | ≥ max {1, |Y |}.
4. Either write X = aZ or X = YZ , where Z is a new variable.

5. Replace all X by aZ or YZ respectively.

6. New system where X does not occur any more and Z occurs at most twice.

7. Cancel either a or Y on the left of the first equation.



Search Graph for abXcY = YcXba

abXcY = YcXba bXcaY = YcXba

cabXY = YcXba XcabY = YcXba

XcabY = cYXba

abX = Xba abY = Yba

baX = Xba baY = Yba
GOAL

ba = ba

-Y ← aY

� Y ← XY

6
Y ← cY

?

Y ← bY

6
X ← cX

?

X ← YX

?

Y ← 1

?
X ← 1

6
X ← bX

?

X ← aX
6

Y ← bY
?

Y ← aY

-X ← 1 �Y ← 1



Rational subsets are everywhere

A nondeterministic finite automaton (NFA) over a monoid M is a finite directed graph A
with initial and final states where the arcs are labeled with elements of M. Reading the
labels of paths from initial to final states defines the accepted language L(A) ⊆ M.

Definition

L ⊆ M is rational if L = L(A) for some NFA.

Rational = regular for f.g. free monoids.

In general, rational sets are not closed under intersection.



All solutions are given by an NFA over the endomorphisms over (A ∪ Ω)∗

More precisely:

1 Let EndA((A ∪ Ω)∗) denote the monoid of endomorphisms over (A ∪ Ω)∗ which leave
the letters of A invariant. Thus, an endomorphism h ∈ EndA((A ∪ Ω)∗) is the same
as a mapping h : Ω→ A ∪ Ω∗). This in turn is the same as a deterministic table: for
each X ∈ Ω there is exactly one table entry which is the word h(X ).

2 Let X ← w denote the endomorphism h ∈ EndA((A ∪ Ω)∗) such that h(X ) = w and
h(y) = y for all X 6= y ∈ A ∪ Ω.

3 Read the search graph as an NFA A where the initial state is the initial equation and
the Goal is the final state. That is the state without variables.

4 We obtain L(A) ⊆ EndA((A ∪ Ω)∗).

If we apply endomorphisms on the right, then we write (X )hg . Thus, (X )hg = hg(X ) in
traditional notation. We obtain:

{ (σ(X ), σ(Y ) | σ solves the quadratic equation } = { ((X )h, (Y )h | h ∈ L(A) } .



An accepting path for the equation abXcY = YcXba

(X,Y) (X,aY)

(X,abXY) (X,abY)

(X,abX)

(aX,abaY)
(GOAL)

(a, aba)

-Y ← aY

� Y ← XY ?

Y ← bY

?

Y ← 1

?

X ← aX

-X ← 1



EDT0L languages

EDT0L refers to Extended, Deterministic, Table, 0 interaction, and Lindenmayer system.
See: The Book of L (Springer, 1986).
EDT0L languages via a “rational control” due to Asveld (1977).

Definition

A relation R ⊆ A∗ × · · · × A∗ is a EDT0L if there is an extended alphabet C with A ⊆ C ,
symbols c1, . . . , ck ∈ C , and a rational set of endomorphisms R ⊆ End(C ∗) such that

L = { (h(c1), . . . , h(ck) | h ∈ R } ⊆ A∗.

We have just seen.

Proposition

The set of all solutions of a quadratic word equation is EDT0L.

But the result is the same for all equations.



PART IV of the trilogy

EDT0L



All solutions for word equations in free monoids with rational constraints

Equations with rational constraints are better!

Theorem [Ciobanu, D., Elder (ICALP 2015)]

Let U=V with be an equation in variables Xi and Ri ⊆ A∗ regular languages for
i = 1, . . . , k. Then the set of all solutions of the equation with regular constraints is
EDT0L. That is

{ (σ(X1), . . . , σ(Xk) | σ solves the equation U=V with σ(Xi ) ∈ Ri }
= { (h(X1), . . . , h(Xk) | h ∈ L(A) } .

The result became possible due to the recompression technique of Artur Jeż for solving
word equations (STACS 2013, JACM 2016) mentioned earlier in the talk.
More about solving equations by recompression by Artur himself later the week.



All solutions

More EDT0L results. We can consider other structures than words. For example.

Free groups with solutions in reduced words. Ciobanu, D., Elder (ICALP 2015)

Partially commutative monoids and groups with solutions in normal forms.
D., Jeż, Kufleitner (ICALP 2016)

Twisted word equations with with solutions in normal forms.
D., Elder (ICALP 2017)
Special case: SL(2,Z).

Solutions sets to systems of equations in hyperbolic groups are EDT0L in PSPACE.
Ciobanu, Elder (ICALP 2019)

Related results about context free groups G . (That is, given a presentation ϕ : A∗ → G ,
then ϕ−1(1) is context-free language.)

G is context-free ⇐⇒ G is a finitely generated subgroup in a semidirect product of
a free group by a finite group. (D.,Weiß (2017) The Isomorphism Problem for Finite
Extensions of Free Groups Is In PSPACE. Sénizergues, Weiß (ICALP 2018)



Some future work

Prove the main conjecture in the field: WordEquations is NP-complete

Prove the weaker form QuadraticWordEquations is NP-complete

Fix the number of variables by k, say k = 4. Prove that solvability of word equations
with at most k variables can be tested in polynomial time.

Büchi’s Problem: WordEquation with the equal-length predicate.

Given a word equation with regular constraints and the not regular
palindrome-predicate (X = X ), then we can still decide solvability. What else can be
done?

Equations with rational constraints in SL(2,Z) are decidable. What about equations
for the monoid of matrices Z2×2? The special case of the membership problem in
Z2×2 is decidable. Potapov and Semukhin (MFCS 2017).



This is the end

Thank you

This is the end,
Beautiful friend,
This is the end,
My only friend, the end.

Jim Morrison, 08.12.1943–03.07.1971



The Book of L by Rozenberg and Salomaa in 1985
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