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Word Equations

Notation:

Let X := {x , y , z , . . .} be a set of variables.

Let A := {a, b, c, . . .} be a set of terminal symbols.

Let U,V ∈ (X ∪ A)∗. Then U = V is a word equation.

Solutions are substitutions of terminal words for the variables such
that the LHS and RHS become identical.

In other words, solutions are terminal-preserving homomorphisms
h : (X ∪ A)∗ → A∗ such that h(U) = h(V ).
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The Satisfiability Problem

The Satisfiability Problem:

Given a word equation U = V , does there exist a solution h?

Does there
exist a solution h satisfying some additional constraints?
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Fragments of Word Equations

Motivation:

Understanding the complexity of the satisfiability problem is important both for
understanding the theory of word equations and for practical applications and as
such, the exact complexity remains an important long-standing open problem.

The premise of this talk is that it is also worth understanding the complexity for
smaller fragments.

From a theoreticians point of view, this is a natural tactic for improving
understanding overall.

Some fragments may be more relevant to practical applications than the general
case anyway.

We need tools for showing upper bounds in particular.
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An Interesting Fragment

Quadratic word equations (QWEs):
QWEs are equations U = V in which each variable x may occur at most twice in
UV .

Satisfiability of quadratic equations remains NP-hard [Diekert, Robson ’99].

There is simple proof of decidability (via Nielson Transformations).

As with the general case, inclusion in NP remains a long-standing open problem.
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A Hard/Simple Fragment

Strictly Regular-Ordered Equations (SROWEs)

SROWEs are equations U = V which have the form

u0x1u1x2u2 . . . xnun = v0x1v1x2v2 . . . xnvn.

where ui , vi ∈ A∗ and the xi s are (distinct) variables.

Theorem

The satisfiability Problem is NP-complete for SROWEs.

Inclusion in NP is straightforward: minimal solutions will be short (linear).

Showing the lower bounds is much more involved, and is done by reduction from
3-Partition.
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A Simple NP-hard Fragment

Additional Constraints:

DFA Constraints: for each variable x , h(x) must belong to the language of some
DFA Ax .

Length Constraints: |h(x)| = 3|h(y)|+ 2 and |h(z)| ≥ 2.

Letter Counting Constraints: |h(x)|b + 1 = 2|h(y)|a.

Subword Constraints: h(x) is a scattered subword of h(y).

Theorem

The satisfiability problem for SROWEs with DFA, length, letter-counting
and subword constraints is NP-complete.
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A Simple NP-hard Fragment

Regular-Ordered Equations (ROWEs):

If we relax the definition slightly, things start to get slightly harder.

ROWEs have a similar form as SROWEs, but we allow some variables to occur

only once (i.e. on one side only).

E .g . x1abax2x3 = bx1ax3ba

Theorem

The satisfiability problem for the single regular-ordered equation xy = yz
with regular constraints is PSPACE-complete.

Theorem

The Satisfiability Problem for ROWEs (without additional constraints) is
NP-complete.
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Upper Bounds

Moving toward more interesting/general classes, we need tools to reason about the
non-minimality of solutions.

We establish a condition for parts of a solution to be ‘removable’ (thus implying
non-minimality) based on a representation of solutions as chains of positions.

While this representation can be generalised to all equations, we shall see that it

yields particular benefits for QWEs.

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 9 / 34



Upper Bounds

Moving toward more interesting/general classes, we need tools to reason about the
non-minimality of solutions.

We establish a condition for parts of a solution to be ‘removable’ (thus implying
non-minimality) based on a representation of solutions as chains of positions.

While this representation can be generalised to all equations, we shall see that it

yields particular benefits for QWEs.

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 9 / 34



Upper Bounds

Moving toward more interesting/general classes, we need tools to reason about the
non-minimality of solutions.

We establish a condition for parts of a solution to be ‘removable’ (thus implying
non-minimality) based on a representation of solutions as chains of positions.

While this representation can be generalised to all equations, we shall see that it

yields particular benefits for QWEs.

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 9 / 34



Chains Representation of Solutions to QWEs

Positions:

Let U = V be a QWE E , and let h be a solution of E , so that h(U) = h(V ).

We number each occurrence of a letter/variable in the equation from left to right.

x x a a y = z y b z → x(1)x(2)a(1)a(2)y(1) = z(1)y(2)b(1)z(2)

The set of positions w.r.t. (E , h) is

Ph
E = {(x , i , d) | x ∈ X ∪ A ∧ 1 ≤ |UV |x ≤ i ∧ 1 ≤ d ≤ |h(x)|}
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Chains Representation of Solutions to QWEs

Positions:

Intuitively, a position refers to a particular letter in the solution-word, specified by
where it occurs relative to a particular occurrence of a variable or terminal.

Hence there are |h(U)|+ |h(V )| total positions.

Since h is a solution, every position has the same letter as its ‘neighbour’ on the
other side of the equation.

For any variable x and i1, i2, d ∈ N, we must also have that the positions (x , i1, d)
and (x , i2, d) have the same value.
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Chains Representation of Solutions to QWEs

Example:
x y a y = a z b b x z

h(x) = aaab, h(y) = baa, h(z) = aa

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x y a y

a z b b x z

h(U)

h(V )

U

V

(x , 1, 3)
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Chains Representation of Solutions to QWEs

Example:

x(1) y(1) a(1) y(2) = a(2) z(1) b(1) b(2) x(2) z(2)
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Chains Representation of Solutions to QWEs

Positions (Neighbour Relation):

Every position has a unique neighbour corresponding to the same
position on the other side of the equation.
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Chains Representation of Solutions to QWEs

Example:
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Chains Representation of Solutions to QWEs

Positions (Sibling Relation):

Every position associated with a variable occurring twice has a sibling
corresponding to the other occurrence of that variable.

More formally, two positions (x , i , d) and (y , j , e) are siblings if
x = y , d = e and i 6= j .
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Chains Representation of Solutions to QWEs

Example:
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V

(x , 1, 3) and (x , 2, 3) are Siblings
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Chains Representation of Solutions to QWEs

Construction of Chains: We partition the solution h into chains of
positions p1 → p2 → . . .→ pk as follows:

Take a position p ∈ Ph
E corresponding to a terminal symbol, or a variable which

occurs only once.

p1 = p and p2 is the (unique) neighbour of p1.

for i ≥ 2, if pi corresponds to a terminal symbol or variable occurring only once,
the chain terminates, and

for i ≥ 2, if pi corresponds to a variable occurring twice, pi+1 is the neighbour of
the sibling of pi .
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Chains Representation of Solutions to QWEs

Construction of Chains (Example):

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

(a, 2, 1)

(x , 1, 1)
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Chains Representation of Solutions to QWEs

Construction of Chains (Example):

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

(a, 2, 1)→ (x , 1, 1)→
(x , 1, 1)
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Chains Representation of Solutions to QWEs
Construction of Chains (Example):

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

(a, 2, 1)→ (x , 1, 1)→ (y , 1, 2)→
(x , 1, 1)
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Constructing the Chains

Example:

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

(a, 2, 1)→ (x , 1, 1)→ (y , 1, 2)→ (z , 2, 1)→
(x , 1, 1)
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Constructing the Chains

If we simply view the chains as equivalence classes, we get the method of filling
the positions.

However, we want to make explicit use of the order in which the positions are
connected.

For a minimal solution, the number of chains will be linear in the length of the
equation, and the sum of the lengths of the chains will be linear in the length of
the solution.

Lemma

Let h be a minimal solution to some QWE U = V . Let C be the longest
chain of h w.r.t U = V . Then |h(U)| ≤ |C||UV |.
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From Chains to Words

Chain-Words:

Let Γ be an alphabet of size 2|A ∪ X | and let ϕ : Ph
E → Γ be an a mapping such

that ϕ((x , i , d)) = ϕ((y , j , e)) if and only if x = y and i = j .

For each chain p1 → p2 → . . .→ pn, we construct a word
w = ϕ(p1)ϕ(p2)ϕ(p3) . . . ϕ(pn−1)ϕ(pn).

We say that w is a chain-word of h w.r.t. E .

Squares:

A word u is a square if it is a direct repetition (it has the form u = vv for some

non-empty word v).
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The Squares Lemma

Lemma (Squares Lemma)

Let E be a QWE, h be a solution to E and let w be a chain word of h
w.r.t. E . If w contains a square, then h is not minimal.
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The Squares Lemma

Example:

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

(a, 2,�1)→ (x, 1,�1)→ (y, 1,�2)→ (z, 2,�1)→ (x, 1,�2)→ (y, 1,�3)→ (z, 2,�2)→
→ (x , 1,�3)→ (a, 1,�1)

(b, 1,�1)→ (x , 1,�4)→ (y , 2,�1)→ (b, 2,�1)
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The Squares Lemma

Example:

a

a

a

a

a

a

b

b

b

b

a

a

a

a

a

a

b

b

a

a

a

a

x(1) y(1) a(1) y(2)

a(2) z(1) b(1) b(2) x(2) z(2)

h(U)

h(V )

U

V

h′(x) = aab, h′(y) = ba, h′(z) = a is also a solution!

h is not minimal.
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The Squares Lemma

The squares lemma provides a general tool for showing complexity upper bounds
for (classes of) QWEs – assume that a ‘long’ solution exists and show that one of
the induced chain-words must contain a square.

We can also generalise it to work with additional constraints on solutions such as
regular constraints, and involutions.

The existence of a square in one of the chain-words corresponds to a set of factors
in the solution which may be ’pumped’.

Unfortunately, proving that long solutions/chain-words must contain squares seems

very difficult.
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Upper Bounds

ROWEs

Theorem

The Satisfiability Problem for regular-ordered word equations is
NP-complete.

A quick inspection shows that for ROWEs, the chains will either go from right to
left, or left to right (but will never change direction).

Thus if a chain visits the same variable more than once, it must be consecutively.
This would induce a “square”, so by our lemma, the solution would not be
minimal.

In a minimal solution, each chain has length linear in the length of the equation.

Thus any minimal solution is quadratic in the length of the equation.
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A quick inspection shows that for ROWEs, the chains will either go from right to
left, or left to right (but will never change direction).

Thus if a chain visits the same variable more than once, it must be consecutively.
This would induce a “square”, so by our lemma, the solution would not be
minimal.

In a minimal solution, each chain has length linear in the length of the equation.
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Upper Bounds

Variable Sparse QWEs (VSQWEs)

We say that a QWE U = V is variable-sparse if

|{x ∈ X | |UV |x = 2}| ≤ log |UV |

Theorem

The Satisfiabiliity Problem for VSQWEs is in NP.
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Upper Bounds

Regular-Reversed Word Equations (RRWEs)
We say that a QWE U = V is regular-reversed if it has the form:

u0x1u1x2u2 . . . xnun = vnxnvn−1xn−1 . . . v1x1v0.

where ui , vi ∈ A∗ and the xi s are (distinct) variables.

Theorem

The Satisfiabiliity Problem for RRWEs is in NP.

The proof in this case requires a much more involved analysis, but relies mostly on

the squares lemma.
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Towards All QWEs

Open Problem

Does there exist an exponential(ish) function f such that, for any QWE
U = V , if h is a solution and |h(U)| > f (|UV |), then at least one of the
chain-words of h w.r.t E contains a square?

A positive answer would imply that the Satisfiability Problem for QWEs is in NP.

So the question is, what does the set of all chain words of QWEs look like?

We have a characterisation for regular equations (each variable occurs at most

once per side).

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 30 / 34



Towards All QWEs

Open Problem

Does there exist an exponential(ish) function f such that, for any QWE
U = V , if h is a solution and |h(U)| > f (|UV |), then at least one of the
chain-words of h w.r.t E contains a square?

A positive answer would imply that the Satisfiability Problem for QWEs is in NP.

So the question is, what does the set of all chain words of QWEs look like?

We have a characterisation for regular equations (each variable occurs at most

once per side).

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 30 / 34



Towards All QWEs

Open Problem

Does there exist an exponential(ish) function f such that, for any QWE
U = V , if h is a solution and |h(U)| > f (|UV |), then at least one of the
chain-words of h w.r.t E contains a square?

A positive answer would imply that the Satisfiability Problem for QWEs is in NP.

So the question is, what does the set of all chain words of QWEs look like?

We have a characterisation for regular equations (each variable occurs at most

once per side).

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 30 / 34



Towards All QWEs

Open Problem

Does there exist an exponential(ish) function f such that, for any QWE
U = V , if h is a solution and |h(U)| > f (|UV |), then at least one of the
chain-words of h w.r.t E contains a square?

A positive answer would imply that the Satisfiability Problem for QWEs is in NP.

So the question is, what does the set of all chain words of QWEs look like?

We have a characterisation for regular equations (each variable occurs at most

once per side).

j.day@lboro.ac.uk Towards Understanding the Complexity of Fragments of Word EquationsMay 7, 2019 30 / 34



Towards All QWEs

Theorem

Let w be a word and let Γ be the alphabet of letters occurring in w. There
exists a regular word equation E with solution h such that w is a
chain-word of h w.r.t. E if and only if there exist letters $,# /∈ Γ and
linear orders <1, <2 on the sets Γ ∪ {#} and Γ ∪ {$} respectively such
that for every u ∈ Γ∗ and A,B,C ,D ∈ Γ∪ {$,#} with A 6= B and C 6= D,
if AuC and BuD are both factors of #w$, then either that A <2 B and
C <1 D or that B <2 A and D <1 C.
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Towards All QWEs

We expect that generalising this to all QWEs is not too hard.

As a consequence, we get some further nice restrictions on how possible

chain-words might look.

Corollary

Let E be a regular word equation and let h be a solution to E. Let w be a
chain-word of h w.r.t. E . Let A,B,C ,D be letters from w such that
A 6= B and C 6= D Then for any word u, at least one of AuC, BuC, AuD,
BuD is not a factor of w.

Corollary

Let E be a regular word equation and let h be a solution to E. Let w be a
chain-word of h w.r.t. E . Let n be the number of variables in E . Then w
contains at most 2n − 1 distinct factors of length 2.
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Towards All QWEs

Lemma

Let w be a chain-word of some solution h w.r.t. some regular word
equation E. Suppose that w contains a factor of the form x1x2x3x4x2x1x3
such that x3 is not a prefix of x1 or x2. Then some chain-word w ′ of h
w.r.t. E contains a square, and h is not minimal.

Unlike squares, all words which are long enough will encounter a factor of the form
x1x2x3x4x2x1x3.

Unfortunately, we do not know that the same holds if in addition we ask that x3 is
not a prefix of x1 or x2.

It is possible to produce other patterns with prefix/suffix restrictions for which the

lemma holds.
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Questions?

Thank you!
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