
Model Checking Regular Expressions

Arlen Cox

5-9 May 2019

IDA – Center for Computing Sciences

1

Managing a corpus of regular expressions

Does the language of the corpus grow?

2

Managing a corpus of regular expressions

∃s. s ∈ L(R) ∧ s /∈ L(C)
How do different solvers perform on this problem?

R = ˆ[01]*1[01]{n}$

C = ˆ[01]*0[01]{n − 1}$

Adapted from Hooimeijer, Weimer 2010
3

Managing a corpus of regular expressions

∃s. s ∈ L(R) ∧ s /∈ L(C)
How do different solvers perform on this problem?

R = ˆ[01]*1[01]{n}$

C = ˆ[01]*0[01]{n − 1}$

Adapted from Hooimeijer, Weimer 2010
3

Regular expression difference

0 5 10 15 20 25 30
parameter

0

20

40

60

80

100

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

4

Qzy has quadratic scaling in n

0 500 1000 1500 2000 2500 3000 3500 4000
parameter

0

20

40

60

80

100

120

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

5

Existing solvers are too slow

C is really a corpus of regular expressions.

∃s. s ∈ L(R) ∧ s /∈ L(C1) ∧ · · · ∧ s /∈ L(Cn)

It only gets worse...

I built Qzy to solve this

6

Existing solvers are too slow

C is really a corpus of regular expressions.

∃s. s ∈ L(R) ∧ s /∈ L(C1) ∧ · · · ∧ s /∈ L(Cn)

It only gets worse...

I built Qzy to solve this

6

Email address corpus

129 email address regular expressions from Regexlib

R = one regular expression from corpus

C = remaining 128 regular expressions

Solver Result

CVC4 Can’t encode (non-printable character ranges)

Z3 Time out after 24 hours (1 core)

Ostrich Time out after 24 hours (44 cores!)

Sloth Memory out (2G) after 10 minutes

7

Email address corpus

129 email address regular expressions from Regexlib

R = one regular expression from corpus

C = remaining 128 regular expressions

Solver Result

CVC4 Can’t encode (non-printable character ranges)

Z3 Time out after 24 hours (1 core)

Ostrich Time out after 24 hours (44 cores!)

Sloth Memory out (2G) after 10 minutes

7

Qzy is fast for email address corpus

0 100 200 300 400 500
time (s)

100

101

102

103

104

co
un

t

8

Qzy is fast for email address corpus

Running the whole suite of 128 cases takes:

• 15m 2s using 1 core.

• 97s using 32 cores of a 36 core computer.

9

Overview

1. Encoding regular expression constraints for model checking

2. Implementation and optimization

3. Ongoing project: Capture groups

10

Encoding regular expression

constraints for model checking

Tabakov/Vardi universality encoding2

Regex NFA TS

• Universality is encoded as a safety property of the transition

system.

• Use an off-the-shelf model checker to check that property.

• Equivalent to a backward BFA encoding1.

1Cox, Leasure. Model Checking Regular Language Constraints. 2017
2Tabakov, Vardi. Experimental Evaluation of Classical Automata

Constructions. 2005

11

Tabakov/Vardi universality encoding example

Example regular expression: aa|[ab]*

q0start

q1

q2

q3

a

a|b

a|b

a

a|b

a|b

12

One bit per NFA state transition system

I (q0, q1, q2, q3) = q0 ∧ ¬q1 ∧ ¬q2 ∧ ¬q3

T

(
q0, q1, q2, q3,

q′0, q
′
1, q

′
2, q

′
3, x

)
=

¬q′0 ∧
q′1 = q0 ∧ x ∈ { a } ∧
q′2 = (q0 ∨ q2) ∧ x ∈ { a,b } ∧

q′3 =

(
q1 ∧ x ∈ { a } ∨
(q0 ∨ q2) ∧ x ∈ { a,b }

)

P(q0, q1, q2, q3) = q0 ∨ q3

13

Emptiness and universality

Emptiness can be checked with a model checker

• If P is satisfied with input string x̄ , x̄ is in the language.

• If P is unsatisfiable for any input string, the language is empty.

T is really a transition function, so

• If ¬P is satisfied with input string x̄ , x̄ is not in the language.

• If ¬P is unsatisfiable for any input string, the language is

universal.

14

With determinism, language combinators follow

With a transition function, given an input, the set state bits (state

set) are deterministic.

Consequently the following equivalences hold

L1 \ L2 ⇔ P1 ∧ ¬P2

L1 ∪ L2 ⇔ P1 ∨ P2

L1 ∩ L2 ⇔ P1 ∧ P2

15

SMT solving with regular expressions

Using these Boolean combinators, I built Qzy, an SMT solver

regular expressions.

16

Implementation and optimization

Implementation

Built as a C++ library with Python and C++ APIs.

API similar to SMT solvers:

• Multiple variables

• Arbitrary Boolean combinators

Goal: feature compatible with RE2:

• UTF-8 character classes

• Begin/end of string/line markers

• Word boundaries

• Capture groups (working on it – more later)

• Back references (not supported by RE2)

• Look ahead (not supported by RE2)

17

Start and end tags

Extend alphabet with special start and end characters

ˆ is (start|\n|\r|\r\n) (depending on matching mode)

$ is (end|\n|\r|\r\n) (depending on matching mode)

Enables:

• Unanchored regular expressions

• Begin/end of string/line markers

• Multiple variables

18

Multiple variables

Use a wide encoding: if a character is 8 bits wide, input for two

variables is 16 bits.

Strings for different variables can have different lengths.

Start and end characters pad out strings so that all have the same

length.

Start and end characters reveal the start and end of strings within

counterexamples.

19

Optimizations

• Alphabet compression

• Regex structural hashing

• Transition system structural hashing

• SAT-simplification

• Preprocessing-free IC3

20

Ongoing project: Capture groups

Capture group example

Anchored regular expression: (aa)|(([ab])*)

Input Group 1 Group 2 Group 3

a – a a

aa aa – –

ba – ba a

Rules:

• Left gets priority

: prioritized state vector

• Last gets priority

: most-recent tag policy

21

Capture group example

Anchored regular expression: (aa)|(([ab])*)

Input Group 1 Group 2 Group 3

a – a a

aa aa – –

ba – ba a

Rules:

• Left gets priority: prioritized state vector

• Last gets priority

: most-recent tag policy

21

Capture group example

Anchored regular expression: (aa)|(([ab])*)

Input Group 1 Group 2 Group 3

a – a a

aa aa – –

ba – ba a

Rules:

• Left gets priority: prioritized state vector

• Last gets priority: most-recent tag policy

21

Configuration is a prioritized state set

Almost identical encoding.

Before:

• Configuration is a set of states

After:

• Configuration is a sequence of states/tags

• Each group has a start/end tag

• Each tag is a bit encoding when the group starts/ends

• Sequence encodes priority of a particular state

22

Configuration is a prioritized state set

Almost identical encoding.

Before:

• Configuration is a set of states

After:

• Configuration is a sequence of states/tags

• Each group has a start/end tag

• Each tag is a bit encoding when the group starts/ends

• Sequence encodes priority of a particular state

22

Encoding is non-trivial in bits

Before n states uses n bits

Now n states and m groups uses n2 · 2m bits.

I plan on implementing this naive encoding.

It is likely that lazy instantiation of these bits will be required for

efficiency.

This requires a more custom model checker.

23

Conclusions

Qzy is an efficient (in practice!) and complete procedure for

Boolean combinations of regular expression constraints.

It supports all features of RE2 except for capture groups (for now):

UTF-8, case folding, complex character classes, anchors, word

boundaries, etc.

It uses a linear time encoding to transition systems.

It uses IC3 to solve the resulting transition systems.

24

Extra Slides

Regular expression difference (unsat)

R = ˆ[01]*11[01]{n}$

C = ˆ[01]*1[01]{n + 1}$

Regular expression difference (unsat)

0 5 10 15 20 25 30
parameter

0

10

20

30

40

50

60

70

tim
e

(s
)

Qzy
Z3
Ostrich
Sloth

Regular expression difference (unsat)

0 500 1000 1500 2000 2500
parameter

0

20

40

60

80

100

120

tim
e

(s
)

Qzy
Z3
Ostrich
Sloth

Regular expression intersection (sat)

∃x . x ∈ L(R) ∧ x ∈ L(C)

R = ˆ[01]*1[01]{n}$

C = ˆ[01]*0[01]{n − 1}$

Regular expression intersection (sat)

0 5 10 15 20 25 30
parameter

0

20

40

60

80

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

Regular expression intersection (sat)

0 1000 2000 3000 4000
parameter

0

20

40

60

80

100

120

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

Regular expression intersection (unsat)

∃x . x ∈ L(R) ∧ x ∈ L(C)

R = ˆ[01]*1[01]{n}$

C = ˆ[01]*0[01]{n}$

Regular expression intersection (unsat)

0 5 10 15 20 25 30
parameter

0

10

20

30

40

50

60

70

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

Regular expression intersection (unsat)

0 500 1000 1500 2000 2500
parameter

0

20

40

60

80

100

120

tim
e

(s
)

Qzy
CVC4
Z3
Ostrich
Sloth

	Encoding regular expression constraints for model checking
	Implementation and optimization
	Ongoing project: Capture groups
	Appendix
	Extra Slides

