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• They are an active area of research and industrial application:

◮ Amazon Neptune, Neo4J, Facebook GraphQL, Google Knowledge
Graph, Oracle Graph DBMS, RDF Virtuoso, Apache Jena, ...
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Features of the query languages we study

Languages we study express essential features for querying graph DBs

◮ Navigation: Recursively traverse the edges of the graph

◮ Pattern matching: Check if a pattern appears in the graph DB

◮ Path comparisons: Based on relations over words

Some of these features form the basis of recently formalized graph DB
query languages:

◮ LDBC Proposal: G-CORE: A Core for Future Graph Query
Languages (SIGMOD’18)

◮ Neo4J Proposal: Cypher: An Evolving Query Language for Property
Graphs (SIGMOD’18)

◮ Survey: Foundations of Modern Query Languages for Graph
Databases (ACM Comput. Surv.’17)
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Problems we study:

Expressiveness: What can be said in a query language L?

Complexity of evaluation: We study the problem:

Problem: Eval(L)
Input: A graph DB G, a tuple t̄ of objects,

an L-query Q.
Question: Is t̄ ∈ Q(G)?

◮ Combined complexity: Both G and Q are part of the input.

◮ Data complexity: Only G is part of the input and Q is fixed.
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Graph data model

Different apps have given rise to a myriad of different graph DB models
• (see (Angles, Gutiérrez (2008)))

We work with a simple graph data model:

Finite, directed, edge labeled graphs

Despite the simplicity of the model:

◮ It is flexible enough to accomodate many other more complex
models and express interesting practical scenarios

◮ The most fundamental theoretical issues related to querying graph
DBs appear in full force for it
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Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E )
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)



Graph databases

Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E )
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)

• A path in G is a sequence of the form:

ρ = v1
a1−→ v2

a2−→ v3 · · · vk
ak−→ vk+1

• The label of ρ, denoted λ(ρ), is the string a1a2 · · · ak−1 ∈ Σ∗
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Graph DBs: Example

The label of such path
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Graph DBs vs NFAs

Important: Graph DBs can be naturally seen as NFAs.

◮ Nodes are states

◮ Edges u
a
−→ v are transitions

◮ There are no initial and final states



BASIC LANGUAGES FOR GRAPH DBs:
Tractability for a big class of languages



Regular path queries

Basic building block for graph queries: Regular path queries (RPQs)

◮ First studied by Mendelzon and Wood (1989)

◮ RPQs = Regular expressions over Σ

◮ Evaluation L(G) of RPQ L on graph DB G = (V ,E ):

• Pairs of nodes (v , v ′) ∈ V linked by path labeled in L
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◮ First studied by Calvanese, de Giacomo, Lenzerini, Vardi (2000)

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ
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More often studied its extension with inverses, or 2RPQs

◮ First studied by Calvanese, de Giacomo, Lenzerini, Vardi (2000)

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ

Evaluation L(G) of 2RPQ L over graph DB G = (V ,E ).

◮ Pairs of nodes in G that satisfy RPQ L(G±), where

• G± obtained from G by adding u
a−

−→ v for each v
a
−→ u ∈ E
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2RPQ evaluation

Problem: Eval(2RPQ)
Input: A graph DB G, nodes v , v ′ in G,

a 2RPQ L
Question: Is (v , v ′) ∈ L(G )?

It boils down to:

Problem: RegularPath

Input: A graph DB G, nodes v , v ′ in G,
a regular expression L over Σ±

Question: Is there a path ρ from v to v ′ in G±

such that λ(ρ) ∈ L?
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Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively
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Complexity of 2RPQ evaluation

Corollary

Eval(2RPQ) can be solved in linear time O(|G| · |L|)



Data complexity of 2RPQ evaluation

Data complexity of 2RPQs belongs to a parallelizable class:

Proposition

Let L be a fixed 2RPQ.
There is NLogspace procedure that computes L(G) for each G

Proof idea:

◮ Construct (G±, v , v ′) from G in Logspace

◮ Check nonemptiness for (G±, v , v ′)×A in NLogspace
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RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection



Conjunctive regular path queries (CRPQs)

RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection

This is the class of conjunctive regular path queries (CRPQs).

◮ Extended with inverses as C2RPQs in [Calvanese et al. (2000)]
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C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form

Ans(z̄) ← (x1, L1, y1), . . . , (xm, Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi ’s



C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form

Ans(z̄) ← (x1, L1, y1), . . . , (xm, Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi ’s

CRPQ: C2RPQ without inverse
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Increase in expressiveness from RPQs has a cost in evaluation

Proposition

Eval(C2RPQ) is NP-complete, even if restricted to CRPQs



Complexity of evaluation of C2RPQs

Increase in expressiveness from RPQs has a cost in evaluation

Proposition

Eval(C2RPQ) is NP-complete, even if restricted to CRPQs

But adding conjunctions is free in data complexity

Proposition

Eval(C2RPQ) can be solved in NLogspace in data complexity



PATH QUERIES:
The power of comparisons
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◮ to include paths in the output of a query, and
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CRPQs and path queries

CRPQs fall short of expressive power for applications that need:

◮ to include paths in the output of a query, and

◮ to define complex relationships among labels of paths

Examples:

◮ Semantic Web queries:
• establish semantic associations among paths

◮ Biological applications:
• compare paths based on similarity

◮ Route-finding applications:
• compare paths based on length or number of occurences of labels

◮ Data provenance and semantic search over the Web:
• require returning paths to the user



Path comparisons

We use a set S of relations on words.

◮ Example: S may contain
• Unary relations: Regular, context-free languages, etc.
• Binary relations: prefix, equal length, subsequence, etc.

◮ Comparisons among labels of paths = Pertenence to some S ∈ S
• Example: w1 is a substring of w2

◮ We assume S contains all regular languages



Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄ , ) ← (x1, L1, y1), . . . , (xm, Lm, ym),

◮ by joining each pair (xi , yi ) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output
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Extended CRPQs and our requirements

ECRPQs meet our requirements:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j )

◮ They allow to export paths in the output

◮ They allow to compare labels of paths with relations Sj ∈ S



Considerations about ECRPQ(S)

• ECRPQ(S) extends the class of CRPQs

◮ Ans(z̄)←
∧

i(xi , Li , yi ) = Ans(z̄) ←
∧

i(xi , πi , yi ), Li (πi )

• Expressiveness and complexity of ECRPQ(S):

◮ Depends on the class S

• We study two such classes with roots in formal language theory:

◮ Regular relations [Elgot, Mezei (1965)]

◮ Rational relations [Nivat (1968)]



COMPARING PATHS WITH

REGULAR RELATIONS:

Preserving tractable data complexity



Introduction

• Regular relations: Regular languages for relations of any arity

◮ REG: Class of regular relations

• Bottomline:

ECRPQ(REG): Reasonable expressiveness and complexity



Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn



Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn

◮ The input strings are written in the n-tapes

◮ Shorter strings are padded with symbol ⊥

◮ At each step:
The automaton simultaneously reads next symbol on each tape
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Examples of regular relations

• All regular languages

• The prefix relation defined by:

(

⋃

a∈Σ
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)∗
·
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(a,⊥)
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• The equal length relation defined by:
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(a, b)
)∗

• Pairs of strings at edit distance at most k , for fixed k ≥ 0



Examples of regular relations

• All regular languages

• The prefix relation defined by:

(

⋃

a∈Σ

(a, a)
)∗
·
(

⋃

a∈Σ

(a,⊥)
)∗

• The equal length relation defined by:

(

⋃

a,b∈Σ

(a, b)
)∗

• Pairs of strings at edit distance at most k , for fixed k ≥ 0

Proposition

The subsequence, subword and suffix relations are not regular
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ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧
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∧
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where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]



ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a
∗(π1), b

∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}



ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a
∗(π1), b

∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}

Corollary

ECRPQ(REG) properly extends the class of CRPQs



Complexity of evaluation of ECRPQ(REG)

• Extending CRPQs with regular relations is free in data complexity
• Combined complexity is that of FO over relational databases

Theorem (B., Libkin, Lin, Wood (2012))

◮ Eval(ECPRQ(REG)) is Pspace-complete

◮ Eval(ECPRQ(REG)) is in NLogspace in data complexity



Complexity of evaluation of ECRPQ(REG)

• Extending CRPQs with regular relations is free in data complexity
• Combined complexity is that of FO over relational databases

Theorem (B., Libkin, Lin, Wood (2012))

◮ Eval(ECPRQ(REG)) is Pspace-complete

◮ Eval(ECPRQ(REG)) is in NLogspace in data complexity

Proof idea:

◮ Convert into RPQ evaluation over Gm, for m = size of ECRPQ

◮ For data complexity m is fixed



Expressiveness of ECRPQ(REG)

Understanding the expressive power of ECRPQ(REG) is difficult.

Proposition

Let L be a language of words. TFAE:

◮ L is expressible by a binary ECRPQ(REG) formula

◮ L is definable by a word equation with constraints in REG



COMPARING PATHS WITH

RATIONAL RELATIONS:

The struggle for decidability and efficiency



Introduction

ECRPQ(REG) queries are still short of expressive power.

◮ RDF or biological networks:
• Compare strings based on subsequence and subword relations

◮ These relations are rational: Accepted by asynchronous automata
• RAT: Class of rational relations

Bottomline:

◮ ECRPQ(RAT) evaluation:
• Undecidable or very high complexity

◮ Restricting the syntactic shape of queries yields tractability
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n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.
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Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

◮ The input strings are written in the n-tapes

◮ At each step:
The automaton enters a new state and move some tape heads

n-ary rational relation:
Described by regular expression over alphabet (Σ ∪ {ǫ})n



Examples of rational relations

• All regular relations

• The subsequence relation �ss defined by

(

(

⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
(

⋃

a∈Σ

(a, ǫ)
)∗

• The subword relation �sw defined by

(

⋃

a∈Σ

(a, ǫ)
)∗
·
(

⋃

b∈Σ

(b, b)
)∗
·
(

⋃

a∈Σ

(a, ǫ)
)∗



Examples of rational relations

• All regular relations

• The subsequence relation �ss defined by

(

(

⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
(

⋃

a∈Σ

(a, ǫ)
)∗

• The subword relation �sw defined by

(

⋃

a∈Σ

(a, ǫ)
)∗
·
(

⋃

b∈Σ

(b, b)
)∗
·
(

⋃

a∈Σ

(a, ǫ)
)∗

Proposition

The set of pairs (w1,w2) such that w1 is the reversal of w2 is not rational.



ECRPQ(RAT)

ECRPQ(RAT): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi ),
∧

j Sj(π̄j),

where each Sj is a rational relation [B., Figueira, Libkin (2012)]

Example: The ECRPQ(RAT) query

Ans(x , y) ← (x , π1, z), (y , π2,w), π1 �ss π2

computes x , y that are origins of paths ρ1 and ρ2 such that:

◮ λ(ρ1) is a subsequence of λ(ρ2)



Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:

◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw
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Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:

◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw

Adding subword relation to ECRPQ(REG) leads to undecidability:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�sw})) is undecidable (even in data complexity)

Adding subword to CRPQ leads to intractability in data complexity:

Theorem (B., Muñoz (2014))

Eval(CRPQ(�sw)) is PSPACE-complete in data complexity

◮ But Eval(CRPQ(�suff)) is in NLogspace in data complexity
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◮ Uses Pspace procedure for word equations with regular expressions



Consequences for word equations

Observation 1: Pspace upper bound for CRPQ(�sw)

◮ Uses Pspace procedure for word equations with regular expressions

Observation 2: There exists a fixed word equation e such that

◮ solving e under a single constraint in REG is undecidable

◮ solving e with regular language constraints is Pspace-complete



Evaluation of ECRPQ(RAT) queries

Adding subsequence to ECRPQ preserves decidability at a very high cost:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�ss})) is decidable, but non-primitive-recursive.

◮ This holds even in data complexity.
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Evaluation of ECRPQ(RAT) queries

Adding subsequence to ECRPQ preserves decidability at a very high cost:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�ss})) is decidable, but non-primitive-recursive.

◮ This holds even in data complexity.

Adding subsequence to CRPQ leads to intractability in data complexity:

Theorem (B., Muñoz (2014))

Eval(CRPQ(�ss)) is NP-complete in data complexity

Observation 3: Word equations + �ss undecidable [Halfon et al (2017)]

◮ Is this also the case for Eval(CRPQ(�ss ∪ �sw))?



Acyclic CRPQ(RAT) queries

Acyclic CRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form

Ans(z̄)←
∧

i≤k

(xi , πi , yi ), Li (πi ),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic



Acyclic CRPQ(RAT) queries

Acyclic CRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form

Ans(z̄)←
∧

i≤k

(xi , πi , yi ), Li (πi ),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic

Acyclic ECRPQ(RAT) is not more expensive than ECRPQ(REG):

Theorem (B., Figueira, Libkin (2012))

◮ Evaluation of acyclic ECRPQ(RAT) queries is Pspace-complete

◮ It is in NLogspace in data complexity



STRING SOLVING:
Applying previous ideas
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◮ Atomic relational constraints:

y = x1 · · · xn | R(x , y)

◮ Boolean combinations of regular expressions:

L(x) | ϕ ∧ ψ | ¬ϕ
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The problem we study

We study satisfiability for conjunctions of:

◮ Atomic relational constraints:

y = x1 · · · xn | R(x , y)

◮ Boolean combinations of regular expressions:

L(x) | ϕ ∧ ψ | ¬ϕ

Example: x = w1yw2zw3 ∧ R(y , z) ∧ ¬S(z)

This class is

◮ Useful: Encodes transductions often used in web security
applications, e.g., replace all

◮ Very expressive: Subsumes word equations with rational constraints
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In full generality the problem is undecidable

Proposition

Satisfiability of expressions R(x , x) is undecidable

Idea: Use acyclicity restrictions as we did for ECRPQ(RAT)

But not just on the graph defined by rational relations ...

◮ R(x , x) is equivalent to x = y ∧ R(x , y)

◮ Satisfiability of formulas of the form x = yz ∧ R(x , z), for R a
regular relation, is undecidable [B., Figueira, Libkin (2013)]

Notion of acyclicity needs to consider expressions y = x1 · · · xn



Acyclicity restriction

We write R(x , y) as y = R(x)

The straight line (SL) fragment:

m
∧

i=1

xi = P(x1, . . . , xi−1),

such that P(x1, . . . , xi−1) is either

L(xj ) or xj1 · · · xjn , for {xj , xj1 , . . . xjn} ⊆ {x1, . . . , xi−1}.



Acyclicity restriction

We write R(x , y) as y = R(x)

The straight line (SL) fragment:

m
∧

i=1

xi = P(x1, . . . , xi−1),

such that P(x1, . . . , xi−1) is either

L(xj ) or xj1 · · · xjn , for {xj , xj1 , . . . xjn} ⊆ {x1, . . . , xi−1}.

Example: The formula x = yz ∧ R(x , y) is not in SL, while the formula
x = w1yw2zw3 ∧ R(y , z) is in SL



The main result

Theorem (Lin, B. (2016))
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The main result

Theorem (Lin, B. (2016))

Satisfiability of expressions in SL is Expspace-complete

Proof idea for upper bound:

◮ Replace concatenations in the expression ϕ with “exponentially big”
DNF expressions consisting exclusively of regular expressions and
regular relations x = y

◮ If ϕ ∈ SL, then the resulting expression ϕ′ is acyclic in the sense
studied for ECRPQ(RAT)

◮ Check satisfiability of ϕ′ in Pspace, i.e., in Expsace in terms of
the size of the input ϕ



A better behaved fragment

SLk : Restriction of SL to expressions of depth k ≥ 1

◮ Depth of a variable x is number of variables on which x depends

◮ Depth of an expression is maximum depth of a variable



A better behaved fragment

SLk : Restriction of SL to expressions of depth k ≥ 1

◮ Depth of a variable x is number of variables on which x depends

◮ Depth of an expression is maximum depth of a variable

Theorem (Lin, B. (2016))

Satisfiability of expressions in SLk is Pspace-complete



FINAL REMARKS



Graph DB query languages and string verification share:

◮ interest in expressing complex interactions among words

◮ understanding which restrictions on such problems can lead to
practical tools in real-world applications



Graph DB query languages and string verification share:

◮ interest in expressing complex interactions among words

◮ understanding which restrictions on such problems can lead to
practical tools in real-world applications

I presented somes interaction between graph DBs, string verification, and
word equations, but others are also possible.

◮ Graph QLs with arithmetic expressions:
◮ Require applying tools based on Presburguer atithmetic and

bounded-reversal counter automata [B., Libkin, Lin, Wood (2012)]

◮ Monadic decomposability:
◮ Can a regular relation be expressed as a Boolean combination of

products of regular languages? [B., Hong, Le, Li, Niskanen (2019)]
◮ Related to boundedness problems for recursive query languages
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