
Graph Database Querying vs String Constraints

Pablo Barceló
Millennium Institute for Foundational Research on Data &

DCC, University of Chile

INTRODUCTION

Graph DBs and applications

• Graph DBs are crucial when topology is as important as data itself

Graph DBs and applications

• Graph DBs are crucial when topology is as important as data itself

• They gained renewed interest in last years due to trendy applications:

◮ Web (semantic)

◮ Social networks

◮ Chemical and biological networks

◮ Software bug localization

◮ . . .

Graph DBs and applications

• Graph DBs are crucial when topology is as important as data itself

• They gained renewed interest in last years due to trendy applications:

◮ Web (semantic)

◮ Social networks

◮ Chemical and biological networks

◮ Software bug localization

◮ . . .

• They are an active area of research and industrial application:

◮ Amazon Neptune, Neo4J, Facebook GraphQL, Google Knowledge
Graph, Oracle Graph DBMS, RDF Virtuoso, Apache Jena, ...

Features of the query languages we study

Languages we study express essential features for querying graph DBs

◮ Navigation: Recursively traverse the edges of the graph

◮ Pattern matching: Check if a pattern appears in the graph DB

◮ Path comparisons: Based on relations over words

Features of the query languages we study

Languages we study express essential features for querying graph DBs

◮ Navigation: Recursively traverse the edges of the graph

◮ Pattern matching: Check if a pattern appears in the graph DB

◮ Path comparisons: Based on relations over words

Some of these features form the basis of recently formalized graph DB
query languages:

◮ LDBC Proposal: G-CORE: A Core for Future Graph Query
Languages (SIGMOD’18)

◮ Neo4J Proposal: Cypher: An Evolving Query Language for Property
Graphs (SIGMOD’18)

◮ Survey: Foundations of Modern Query Languages for Graph
Databases (ACM Comput. Surv.’17)

Problems we study:

Expressiveness: What can be said in a query language L?

Problems we study:

Expressiveness: What can be said in a query language L?

Complexity of evaluation: We study the problem:

Problem: Eval(L)
Input: A graph DB G, a tuple t̄ of objects,

an L-query Q.
Question: Is t̄ ∈ Q(G)?

◮ Combined complexity: Both G and Q are part of the input.

◮ Data complexity: Only G is part of the input and Q is fixed.

THE GRAPH DATA MODEL

Graph data model

Different apps have given rise to a myriad of different graph DB models
• (see (Angles, Gutiérrez (2008)))

Graph data model

Different apps have given rise to a myriad of different graph DB models
• (see (Angles, Gutiérrez (2008)))

We work with a simple graph data model:

Finite, directed, edge labeled graphs

Graph data model

Different apps have given rise to a myriad of different graph DB models
• (see (Angles, Gutiérrez (2008)))

We work with a simple graph data model:

Finite, directed, edge labeled graphs

Despite the simplicity of the model:

◮ It is flexible enough to accomodate many other more complex
models and express interesting practical scenarios

◮ The most fundamental theoretical issues related to querying graph
DBs appear in full force for it

Graph databases

Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E)
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)

Graph databases

Definition

A graph DB G over finite alphabet Σ is a pair:

(V , E)
set of edges of the form v1

a
−→ v2finite set of node ids

(v1, v2 ∈ V , a ∈ Σ)

• A path in G is a sequence of the form:

ρ = v1
a1−→ v2

a2−→ v3 · · · vk
ak−→ vk+1

• The label of ρ, denoted λ(ρ), is the string a1a2 · · · ak−1 ∈ Σ∗

Graph DBs: Example

A graph DB representation of a fragment of DBLP

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

conf:pods

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator
Pods:Ullman89inPods:89

partOf

se
ri
es

Pods:Libkin95

IPL:LibkinW95

partOf creator
inPods:95

journal:IPL

series

Pods:Vardi95

Graph DBs: Example

A path in this graph DB

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

inPods:89

se
ri
es

Pods:Ullman89
creatorpartOf

Pods:Vardi95

conf:pods

partOf

IPL:LibkinW95

inPods:95

Pods:Libkin95

journal:IPL

creator

series

Graph DBs: Example

The label of such path

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

inPods:89

se
ri
es

Pods:Ullman89
creatorpartOf

Pods:Vardi95

conf:pods

partOf

IPL:LibkinW95

inPods:95

Pods:Libkin95

journal:IPL

creator

series

Graph DBs vs NFAs

Important: Graph DBs can be naturally seen as NFAs.

◮ Nodes are states

◮ Edges u
a
−→ v are transitions

◮ There are no initial and final states

BASIC LANGUAGES FOR GRAPH DBs:
Tractability for a big class of languages

Regular path queries

Basic building block for graph queries: Regular path queries (RPQs)

◮ First studied by Mendelzon and Wood (1989)

◮ RPQs = Regular expressions over Σ

◮ Evaluation L(G) of RPQ L on graph DB G = (V ,E):

• Pairs of nodes (v , v ′) ∈ V linked by path labeled in L

RPQs with inverse

More often studied its extension with inverses, or 2RPQs

◮ First studied by Calvanese, de Giacomo, Lenzerini, Vardi (2000)

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ

RPQs with inverse

More often studied its extension with inverses, or 2RPQs

◮ First studied by Calvanese, de Giacomo, Lenzerini, Vardi (2000)

◮ 2RPQs = RPQs over Σ±, where:

• Σ± = Σ extended with the inverse a− of each a ∈ Σ

Evaluation L(G) of 2RPQ L over graph DB G = (V ,E).

◮ Pairs of nodes in G that satisfy RPQ L(G±), where

• G± obtained from G by adding u
a−

−→ v for each v
a
−→ u ∈ E

Example of 2RPQ

The 2RPQ

(

creator− ·
(

(partOf · series) ∪ journal
)

)

computes (a, v) s.t. author a published in conference or journal v

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

conf:pods

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator
Pods:Ullman89inPods:89

partOf

se
ri
es

Pods:Libkin95

IPL:LibkinW95

partOf creator
inPods:95

journal:IPL

series

Pods:Vardi95

Example of 2RPQ

The 2RPQ

(

creator− ·
(

(partOf · series) ∪ journal
)

)

computes (a, v) s.t. author a published in conference or journal v

inPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a
series

journal

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

series partOf creator
conf:pods :Ronald Fagin

av
:Moshe Y. Vardi

Pods:Ullman89
creator

inPods:89

se
ri
es

partOf

series

IPL:LibkinW95

inPods:95
partOf creator

Pods:Vardi95

Pods:Libkin95

journal:IPL

Example of 2RPQ

Example: The 2RPQ

(

creator− ·
(

(partOf · series) ∪ journal
)

)

computes (a, v) s.t. author a published in conference or journal v

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

conf:pods

Jacm:HopcroftT74

:Jeffrey Ullman

conf:focs Focs:HopU67a
series

series

partOf

partOf

creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

journal creator
:Robert E Tarjanjournal:jacm

v

a

:Moshe Y. Vardi

Pods:Ullman89
creator

inPods:89

se
ri
es

partOf

series

IPL:LibkinW95

inPods:95 Pods:Vardi95
partOf creator

journal:IPL

Pods:Libkin95

2RPQ evaluation

Problem: Eval(2RPQ)
Input: A graph DB G, nodes v , v ′ in G,

a 2RPQ L
Question: Is (v , v ′) ∈ L(G)?

2RPQ evaluation

Problem: Eval(2RPQ)
Input: A graph DB G, nodes v , v ′ in G,

a 2RPQ L
Question: Is (v , v ′) ∈ L(G)?

It boils down to:

Problem: RegularPath

Input: A graph DB G, nodes v , v ′ in G,
a regular expression L over Σ±

Question: Is there a path ρ from v to v ′ in G±

such that λ(ρ) ∈ L?

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively

◮ Then (v , v ′) ∈ L(G) iff NFA (G±, v , v ′)×A is nonempty

◮ The latter can be checked in time O(|G±| · |A|) = O(|G| · |L|)

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively

◮ Then (v , v ′) ∈ L(G) iff NFA (G±, v , v ′)×A is nonempty

◮ The latter can be checked in time O(|G±| · |A|) = O(|G| · |L|)

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively

◮ Then (v , v ′) ∈ L(G) iff NFA (G±, v , v ′)×A is nonempty

◮ The latter can be checked in time O(|G±| · |A|) = O(|G| · |L|)

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively

◮ Then (v , v ′) ∈ L(G) iff NFA (G±, v , v ′)×A is nonempty

◮ The latter can be checked in time O(|G±| · |A|) = O(|G| · |L|)

Complexity of finding regular paths

Theorem (Folklore)

RegularPath can be solved in time O(|G| · |L|)

Proof idea:

◮ Compute in linear time from L an equivalent NFA A

◮ Compute in linear time (G±, v , v ′): NFA obtained from G± by
setting v and v ′ as initial and final states, respectively

◮ Then (v , v ′) ∈ L(G) iff NFA (G±, v , v ′)×A is nonempty

◮ The latter can be checked in time O(|G±| · |A|) = O(|G| · |L|)

Complexity of 2RPQ evaluation

Corollary

Eval(2RPQ) can be solved in linear time O(|G| · |L|)

Data complexity of 2RPQ evaluation

Data complexity of 2RPQs belongs to a parallelizable class:

Proposition

Let L be a fixed 2RPQ.
There is NLogspace procedure that computes L(G) for each G

Proof idea:

◮ Construct (G±, v , v ′) from G in Logspace

◮ Check nonemptiness for (G±, v , v ′)×A in NLogspace

Conjunctive regular path queries (CRPQs)

RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection

Conjunctive regular path queries (CRPQs)

RPQs still do not express arbitrary patterns over graph DBs.

◮ To do this we need to close RPQs under joins and projection

This is the class of conjunctive regular path queries (CRPQs).

◮ Extended with inverses as C2RPQs in [Calvanese et al. (2000)]

Example of C2RPQ

The C2RPQ

Ans(x , u) ← (x , creator−

, y), (y , partOf · series, z), (y , creator, u)

computes pairs (a1, a2) that are coauthors of a conference paper

:Ronald FagininPods:83

:John E. HopcroftinFocs:FOCS8

conf:pods

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

series

journal

partOf

partOf

creator
creator

creator
creator

cr
ea
to
r

creator

Pods:FaginUV83
creator

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator
Pods:Ullman89inPods:89

partOf

se
ri
es

Pods:Libkin95

IPL:LibkinW95

partOf creator
inPods:95

journal:IPL

series

Pods:Vardi95

Example of C2RPQ

The C2RPQ

Ans(x , u) ← (x , creator−

, y), (y , partOf · series, z), (y , creator, u)

computes pairs (a1, a2) that are coauthors of a conference paper

cr
ea
to
r

inPods:83

:John E. HopcroftinFocs:FOCS8

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a
partOf

creator
creator

creator
creator

Pods:FaginUV83

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator

partOfseries creator
conf:pods :Ronald Fagin

z
y

u

x

:Moshe Y. Vardi

series

journal

se
ri
es

partOf
Pods:Ullman89

creator
inPods:89

Pods:Vardi95inPods:95
partOf

IPL:LibkinW95

Pods:Libkin95

series

journal:IPL

creator

Example of C2RPQ

The C2RPQ

Ans(x , u) ← (x , creator−

, y), (y , partOf · series, z), (y , creator, u)

computes pairs (a1, a2) that are coauthors of a conference paper

inPods:83

:John E. HopcroftinFocs:FOCS8

conf:pods

journal:jacm Jacm:HopcroftT74 :Robert E Tarjan

:Jeffrey Ullman

conf:focs Focs:HopU67a

:Moshe Y. Vardi

series

journal

partOf

creator
creator

creator
creator

cr
ea
to
r

Pods:FaginUV83

creator
:Leonid Libkin

partOf

creator
cr
ea
to
r

:Limsoon Wong
journal

creator

partOfseries creator
:Ronald Fagin

a1

a2
creator

inPods:89 Pods:Ullman89

se
ri
es

partOf

IPL:LibkinW95

series

journal:IPL

creatorpartOf

Pods:Libkin95

Pods:Vardi95inPods:95

C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form

Ans(z̄) ← (x1, L1, y1), . . . , (xm, Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi ’s

C2RPQ: Formal definition

C2RPQ over Σ: Rule of the form

Ans(z̄) ← (x1, L1, y1), . . . , (xm, Lm, ym),

such that

◮ the xi , yi are variables,

◮ each Li is a 2RPQ over Σ,

◮ the output z̄ has some variables among the xi , yi ’s

CRPQ: C2RPQ without inverse

Complexity of evaluation of C2RPQs

Increase in expressiveness from RPQs has a cost in evaluation

Proposition

Eval(C2RPQ) is NP-complete, even if restricted to CRPQs

Complexity of evaluation of C2RPQs

Increase in expressiveness from RPQs has a cost in evaluation

Proposition

Eval(C2RPQ) is NP-complete, even if restricted to CRPQs

But adding conjunctions is free in data complexity

Proposition

Eval(C2RPQ) can be solved in NLogspace in data complexity

PATH QUERIES:
The power of comparisons

CRPQs and path queries

CRPQs fall short of expressive power for applications that need:

◮ to include paths in the output of a query, and

◮ to define complex relationships among labels of paths

CRPQs and path queries

CRPQs fall short of expressive power for applications that need:

◮ to include paths in the output of a query, and

◮ to define complex relationships among labels of paths

Examples:

◮ Semantic Web queries:
• establish semantic associations among paths

◮ Biological applications:
• compare paths based on similarity

◮ Route-finding applications:
• compare paths based on length or number of occurences of labels

◮ Data provenance and semantic search over the Web:
• require returning paths to the user

Path comparisons

We use a set S of relations on words.

◮ Example: S may contain
• Unary relations: Regular, context-free languages, etc.
• Binary relations: prefix, equal length, subsequence, etc.

◮ Comparisons among labels of paths = Pertenence to some S ∈ S
• Example: w1 is a substring of w2

◮ We assume S contains all regular languages

Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄ ,) ← (x1, L1, y1), . . . , (xm, Lm, ym),

◮ by joining each pair (xi , yi) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output

Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄,) ← (x1, π1, y1), . . . , (xm, πm, ym),

◮ by joining each pair (xi , yi) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output

Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄,) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)

◮ by joining each pair (xi , yi) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output

Extended CRPQs

The S-extended CRPQs (ECRPQ(S)) are rules obtained from a CRPQ:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)

◮ by joining each pair (xi , yi) with a path variable πi ,

◮ comparing labels of paths in π̄j wrt Sj ∈ S
• for π̄j a tuple of path variables among the πi ’s,

◮ projecting some of πi ’s as a tuple χ̄ in the output

Extended CRPQs and our requirements

ECRPQs meet our requirements:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)

Extended CRPQs and our requirements

ECRPQs meet our requirements:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)

◮ They allow to export paths in the output

◮ They allow to compare labels of paths with relations Sj ∈ S

Extended CRPQs and our requirements

ECRPQs meet our requirements:

Ans(z̄, χ̄) ← (x1, π1, y1), . . . , (xm, πm, ym),
∧

1≤j≤t Sj(π̄j)

◮ They allow to export paths in the output

◮ They allow to compare labels of paths with relations Sj ∈ S

Considerations about ECRPQ(S)

• ECRPQ(S) extends the class of CRPQs

◮ Ans(z̄)←
∧

i(xi , Li , yi) = Ans(z̄) ←
∧

i(xi , πi , yi), Li (πi)

• Expressiveness and complexity of ECRPQ(S):

◮ Depends on the class S

• We study two such classes with roots in formal language theory:

◮ Regular relations [Elgot, Mezei (1965)]

◮ Rational relations [Nivat (1968)]

COMPARING PATHS WITH

REGULAR RELATIONS:

Preserving tractable data complexity

Introduction

• Regular relations: Regular languages for relations of any arity

◮ REG: Class of regular relations

• Bottomline:

ECRPQ(REG): Reasonable expressiveness and complexity

Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn

Regular relations

n-ary regular relation:

Set of n-tuples (w1, . . . ,wn) of strings
accepted by synchronous automaton over Σn

◮ The input strings are written in the n-tapes

◮ Shorter strings are padded with symbol ⊥

◮ At each step:
The automaton simultaneously reads next symbol on each tape

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a
w3 = b b · · ·
...

...
wn = a b b · · · a c

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Synchronous automata

w1 = a a b · · · a b c
w2 = a b a · · · a ⊥ ⊥
w3 = b b ⊥ · · · ⊥ ⊥ ⊥
...

...
wn = a b b · · · a c ⊥

⇑

Examples of regular relations

• All regular languages

• The prefix relation defined by:

(

⋃

a∈Σ

(a, a)
)∗
·
(

⋃

a∈Σ

(a,⊥)
)∗

• The equal length relation defined by:

(

⋃

a,b∈Σ

(a, b)
)∗

• Pairs of strings at edit distance at most k , for fixed k ≥ 0

Examples of regular relations

• All regular languages

• The prefix relation defined by:

(

⋃

a∈Σ

(a, a)
)∗
·
(

⋃

a∈Σ

(a,⊥)
)∗

• The equal length relation defined by:

(

⋃

a,b∈Σ

(a, b)
)∗

• Pairs of strings at edit distance at most k , for fixed k ≥ 0

Proposition

The subsequence, subword and suffix relations are not regular

ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi),
∧

j Sj(π̄j),

where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]

ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi),
∧

j Sj(π̄j),

where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a
∗(π1), b

∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}

ECRPQ(REG)

ECRPQ(REG): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi),
∧

j Sj(π̄j),

where each Sj is a regular relation [B., Libkin, Lin, Wood (2012)]

Example: The ECRPQ(REG) query

Ans(x , y) ← (x , π1, z), (z , π2, y), a
∗(π1), b

∗(π2), equal length(π1, π2)

computes pairs of nodes linked by a path labeled in {anbn | n ≥ 0}

Corollary

ECRPQ(REG) properly extends the class of CRPQs

Complexity of evaluation of ECRPQ(REG)

• Extending CRPQs with regular relations is free in data complexity
• Combined complexity is that of FO over relational databases

Theorem (B., Libkin, Lin, Wood (2012))

◮ Eval(ECPRQ(REG)) is Pspace-complete

◮ Eval(ECPRQ(REG)) is in NLogspace in data complexity

Complexity of evaluation of ECRPQ(REG)

• Extending CRPQs with regular relations is free in data complexity
• Combined complexity is that of FO over relational databases

Theorem (B., Libkin, Lin, Wood (2012))

◮ Eval(ECPRQ(REG)) is Pspace-complete

◮ Eval(ECPRQ(REG)) is in NLogspace in data complexity

Proof idea:

◮ Convert into RPQ evaluation over Gm, for m = size of ECRPQ

◮ For data complexity m is fixed

Expressiveness of ECRPQ(REG)

Understanding the expressive power of ECRPQ(REG) is difficult.

Proposition

Let L be a language of words. TFAE:

◮ L is expressible by a binary ECRPQ(REG) formula

◮ L is definable by a word equation with constraints in REG

COMPARING PATHS WITH

RATIONAL RELATIONS:

The struggle for decidability and efficiency

Introduction

ECRPQ(REG) queries are still short of expressive power.

◮ RDF or biological networks:
• Compare strings based on subsequence and subword relations

◮ These relations are rational: Accepted by asynchronous automata
• RAT: Class of rational relations

Bottomline:

◮ ECRPQ(RAT) evaluation:
• Undecidable or very high complexity

◮ Restricting the syntactic shape of queries yields tractability

Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

◮ The input strings are written in the n-tapes

◮ At each step:
The automaton enters a new state and move some tape heads

Rational relations

n-ary rational relation:
Set of n-tuples (w1, . . . ,wn) of strings
accepted by asynchronous automaton with n heads.

◮ The input strings are written in the n-tapes

◮ At each step:
The automaton enters a new state and move some tape heads

n-ary rational relation:
Described by regular expression over alphabet (Σ ∪ {ǫ})n

Examples of rational relations

• All regular relations

• The subsequence relation �ss defined by

(

(

⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
(

⋃

a∈Σ

(a, ǫ)
)∗

• The subword relation �sw defined by

(

⋃

a∈Σ

(a, ǫ)
)∗
·
(

⋃

b∈Σ

(b, b)
)∗
·
(

⋃

a∈Σ

(a, ǫ)
)∗

Examples of rational relations

• All regular relations

• The subsequence relation �ss defined by

(

(

⋃

a∈Σ

(a, ǫ)
)∗

⋃

b∈Σ

(b, b)

)∗

·
(

⋃

a∈Σ

(a, ǫ)
)∗

• The subword relation �sw defined by

(

⋃

a∈Σ

(a, ǫ)
)∗
·
(

⋃

b∈Σ

(b, b)
)∗
·
(

⋃

a∈Σ

(a, ǫ)
)∗

Proposition

The set of pairs (w1,w2) such that w1 is the reversal of w2 is not rational.

ECRPQ(RAT)

ECRPQ(RAT): Class of queries of the form

Ans(z̄, χ̄) ←
∧

i (xi , πi , yi),
∧

j Sj(π̄j),

where each Sj is a rational relation [B., Figueira, Libkin (2012)]

Example: The ECRPQ(RAT) query

Ans(x , y) ← (x , π1, z), (y , π2,w), π1 �ss π2

computes x , y that are origins of paths ρ1 and ρ2 such that:

◮ λ(ρ1) is a subsequence of λ(ρ2)

Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:

◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw

Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:

◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw

Adding subword relation to ECRPQ(REG) leads to undecidability:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�sw})) is undecidable (even in data complexity)

Evaluation of ECRPQ(RAT) queries

Evaluation of queries in ECRPQ(RAT) is undecidable, but:

◮ True if we allow only practically motivated rational relations?
• For example, �ss and �sw

Adding subword relation to ECRPQ(REG) leads to undecidability:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�sw})) is undecidable (even in data complexity)

Adding subword to CRPQ leads to intractability in data complexity:

Theorem (B., Muñoz (2014))

Eval(CRPQ(�sw)) is PSPACE-complete in data complexity

◮ But Eval(CRPQ(�suff)) is in NLogspace in data complexity

Consequences for word equations

Observation 1: Pspace upper bound for CRPQ(�sw)

◮ Uses Pspace procedure for word equations with regular expressions

Consequences for word equations

Observation 1: Pspace upper bound for CRPQ(�sw)

◮ Uses Pspace procedure for word equations with regular expressions

Observation 2: There exists a fixed word equation e such that

◮ solving e under a single constraint in REG is undecidable

◮ solving e with regular language constraints is Pspace-complete

Evaluation of ECRPQ(RAT) queries

Adding subsequence to ECRPQ preserves decidability at a very high cost:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�ss})) is decidable, but non-primitive-recursive.

◮ This holds even in data complexity.

Evaluation of ECRPQ(RAT) queries

Adding subsequence to ECRPQ preserves decidability at a very high cost:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�ss})) is decidable, but non-primitive-recursive.

◮ This holds even in data complexity.

Adding subsequence to CRPQ leads to intractability in data complexity:

Theorem (B., Muñoz (2014))

Eval(CRPQ(�ss)) is NP-complete in data complexity

Evaluation of ECRPQ(RAT) queries

Adding subsequence to ECRPQ preserves decidability at a very high cost:

Theorem (B., Figueira, Libkin (2012))

Eval(ECRPQ(REG ∪{�ss})) is decidable, but non-primitive-recursive.

◮ This holds even in data complexity.

Adding subsequence to CRPQ leads to intractability in data complexity:

Theorem (B., Muñoz (2014))

Eval(CRPQ(�ss)) is NP-complete in data complexity

Observation 3: Word equations + �ss undecidable [Halfon et al (2017)]

◮ Is this also the case for Eval(CRPQ(�ss ∪ �sw))?

Acyclic CRPQ(RAT) queries

Acyclic CRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form

Ans(z̄)←
∧

i≤k

(xi , πi , yi), Li (πi),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic

Acyclic CRPQ(RAT) queries

Acyclic CRPQ(RAT) queries yield tractable data complexity.

◮ Queries of the form

Ans(z̄)←
∧

i≤k

(xi , πi , yi), Li (πi),
∧

j

Sj(πj1 , πj2),

where the graph on {1, . . . , k} defined by edges (πj1 , πj2) is acyclic

Acyclic ECRPQ(RAT) is not more expensive than ECRPQ(REG):

Theorem (B., Figueira, Libkin (2012))

◮ Evaluation of acyclic ECRPQ(RAT) queries is Pspace-complete

◮ It is in NLogspace in data complexity

STRING SOLVING:
Applying previous ideas

The problem we study

We study satisfiability for conjunctions of:

◮ Atomic relational constraints:

y = x1 · · · xn | R(x , y)

◮ Boolean combinations of regular expressions:

L(x) | ϕ ∧ ψ | ¬ϕ

The problem we study

We study satisfiability for conjunctions of:

◮ Atomic relational constraints:

y = x1 · · · xn | R(x , y)

◮ Boolean combinations of regular expressions:

L(x) | ϕ ∧ ψ | ¬ϕ

Example: x = w1yw2zw3 ∧ R(y , z) ∧ ¬S(z)

The problem we study

We study satisfiability for conjunctions of:

◮ Atomic relational constraints:

y = x1 · · · xn | R(x , y)

◮ Boolean combinations of regular expressions:

L(x) | ϕ ∧ ψ | ¬ϕ

Example: x = w1yw2zw3 ∧ R(y , z) ∧ ¬S(z)

This class is

◮ Useful: Encodes transductions often used in web security
applications, e.g., replace all

◮ Very expressive: Subsumes word equations with rational constraints

In full generality the problem is undecidable

Proposition

Satisfiability of expressions R(x , x) is undecidable

In full generality the problem is undecidable

Proposition

Satisfiability of expressions R(x , x) is undecidable

Idea: Use acyclicity restrictions as we did for ECRPQ(RAT)

In full generality the problem is undecidable

Proposition

Satisfiability of expressions R(x , x) is undecidable

Idea: Use acyclicity restrictions as we did for ECRPQ(RAT)

But not just on the graph defined by rational relations ...

◮ R(x , x) is equivalent to x = y ∧ R(x , y)

◮ Satisfiability of formulas of the form x = yz ∧ R(x , z), for R a
regular relation, is undecidable [B., Figueira, Libkin (2013)]

In full generality the problem is undecidable

Proposition

Satisfiability of expressions R(x , x) is undecidable

Idea: Use acyclicity restrictions as we did for ECRPQ(RAT)

But not just on the graph defined by rational relations ...

◮ R(x , x) is equivalent to x = y ∧ R(x , y)

◮ Satisfiability of formulas of the form x = yz ∧ R(x , z), for R a
regular relation, is undecidable [B., Figueira, Libkin (2013)]

Notion of acyclicity needs to consider expressions y = x1 · · · xn

Acyclicity restriction

We write R(x , y) as y = R(x)

The straight line (SL) fragment:

m
∧

i=1

xi = P(x1, . . . , xi−1),

such that P(x1, . . . , xi−1) is either

L(xj) or xj1 · · · xjn , for {xj , xj1 , . . . xjn} ⊆ {x1, . . . , xi−1}.

Acyclicity restriction

We write R(x , y) as y = R(x)

The straight line (SL) fragment:

m
∧

i=1

xi = P(x1, . . . , xi−1),

such that P(x1, . . . , xi−1) is either

L(xj) or xj1 · · · xjn , for {xj , xj1 , . . . xjn} ⊆ {x1, . . . , xi−1}.

Example: The formula x = yz ∧ R(x , y) is not in SL, while the formula
x = w1yw2zw3 ∧ R(y , z) is in SL

The main result

Theorem (Lin, B. (2016))

Satisfiability of expressions in SL is Expspace-complete

The main result

Theorem (Lin, B. (2016))

Satisfiability of expressions in SL is Expspace-complete

Proof idea for upper bound:

◮ Replace concatenations in the expression ϕ with “exponentially big”
DNF expressions consisting exclusively of regular expressions and
regular relations x = y

◮ If ϕ ∈ SL, then the resulting expression ϕ′ is acyclic in the sense
studied for ECRPQ(RAT)

◮ Check satisfiability of ϕ′ in Pspace, i.e., in Expsace in terms of
the size of the input ϕ

A better behaved fragment

SLk : Restriction of SL to expressions of depth k ≥ 1

◮ Depth of a variable x is number of variables on which x depends

◮ Depth of an expression is maximum depth of a variable

A better behaved fragment

SLk : Restriction of SL to expressions of depth k ≥ 1

◮ Depth of a variable x is number of variables on which x depends

◮ Depth of an expression is maximum depth of a variable

Theorem (Lin, B. (2016))

Satisfiability of expressions in SLk is Pspace-complete

FINAL REMARKS

Graph DB query languages and string verification share:

◮ interest in expressing complex interactions among words

◮ understanding which restrictions on such problems can lead to
practical tools in real-world applications

Graph DB query languages and string verification share:

◮ interest in expressing complex interactions among words

◮ understanding which restrictions on such problems can lead to
practical tools in real-world applications

I presented somes interaction between graph DBs, string verification, and
word equations, but others are also possible.

◮ Graph QLs with arithmetic expressions:
◮ Require applying tools based on Presburguer atithmetic and

bounded-reversal counter automata [B., Libkin, Lin, Wood (2012)]

◮ Monadic decomposability:
◮ Can a regular relation be expressed as a Boolean combination of

products of regular languages? [B., Hong, Le, Li, Niskanen (2019)]
◮ Related to boundedness problems for recursive query languages

THANKS

